Comparison of spatial integration and surround suppression characteristics in spiking activity and the local field potential in macaque V1

2008 ◽  
Vol 28 (3) ◽  
pp. 447-459 ◽  
Author(s):  
M. A. Gieselmann ◽  
A. Thiele
2021 ◽  
Author(s):  
Hiroshi Tamura

AbstractNeuron activity in the sensory cortices mainly depends on feedforward thalamic inputs. High-frequency activity of a thalamic input can be temporally integrated by a neuron in the sensory cortex and is likely to induce larger depolarization. However, feedforward inhibition (FFI) and depression of excitatory synaptic transmission in thalamocortical pathways attenuate depolarization induced by the latter part of high-frequency spiking activity and the temporal summation may not be effective. The spiking activity of a thalamic neuron in a specific temporal pattern may circumvent FFI and depression of excitatory synapses. The present study determined the relationship between the temporal pattern of spiking activity of a single thalamic neuron and the degree of cortical activation as well as that between the firing rate of spiking activity of a single thalamic neuron and the degree of cortical activation. Spiking activity of a thalamic neuron was recorded extracellularly from the lateral geniculate nucleus (LGN) in male Long-Evans rats. Degree of cortical activation was assessed by simultaneous recording of local field potential (LFP) from the visual cortex. A specific temporal pattern appearing in three consecutive spikes of an LGN neuron induced larger cortical LFP modulation than high-frequency spiking activity during a short period. These findings indicate that spiking activity of thalamic inputs is integrated by a synaptic mechanism sensitive to an input temporal pattern.Significance StatementSensory cortical activity depends on thalamic inputs. Despite the importance of thalamocortical transmission, how spiking activity of thalamic inputs is integrated by cortical neurons remains unclear. Feedforward inhibition and synaptic depression of excitatory transmission may not allow simple temporal summation of membrane potential induced by consecutive spiking activity of a thalamic neuron. A specific temporal pattern appearing in three consecutive spikes of a thalamic neuron induced larger cortical local field potential modulation than high-frequency spiking activity during a short period. The findings indicate the importance of the temporal pattern of spiking activity of a single thalamic neuron on cortical activation.


2018 ◽  
Author(s):  
Francisco Garcca-Rosales ◽  
Lisa M. Martin ◽  
M. Jerome Beetz ◽  
Yuranny Cabral-Calderrn ◽  
Manfred KKssl ◽  
...  

2012 ◽  
Vol 107 (3) ◽  
pp. 984-994 ◽  
Author(s):  
Gytis Baranauskas ◽  
Emma Maggiolini ◽  
Alessandro Vato ◽  
Giannicola Angotzi ◽  
Andrea Bonfanti ◽  
...  

It has been noted that the power spectrum of intracortical local field potential (LFP) often scales as 1/f−2. It is thought that LFP mostly represents the spiking-related neuronal activity such as synaptic currents and spikes in the vicinity of the recording electrode, but no 1/f2 scaling is detected in the spike power. Although tissue filtering or modulation of spiking activity by UP and DOWN states could account for the observed LFP scaling, there is no consensus as to how it arises. We addressed this question by recording simultaneously LFP and single neurons (“single units”) from multiple sites in somatosensory cortex of anesthetized rats. Single-unit data revealed the presence of periods of high activity, presumably corresponding to the “UP” states when the neuronal membrane potential is depolarized, and periods of no activity, the putative “DOWN” states when the membrane potential is close to resting. As expected, the LFP power scaled as 1/f2 but no such scaling was found in the power spectrum of spiking activity. Our analysis showed that 1/f2 scaling in the LFP power spectrum was largely generated by the steplike transitions between UP and DOWN states. The shape of the LFP signal during these transitions, but not the transition timing, was crucial to obtain the observed scaling. These transitions were probably induced by synchronous changes in the membrane potential across neurons. We conclude that a 1/f2 scaling in the LFP power indicates the presence of steplike transitions in the LFP trace and says little about the statistical properties of the associated neuronal firing.


2013 ◽  
Vol 133 (8) ◽  
pp. 1493-1500 ◽  
Author(s):  
Ryuji Kano ◽  
Kenichi Usami ◽  
Takahiro Noda ◽  
Tomoyo I. Shiramatsu ◽  
Ryohei Kanzaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document