scholarly journals Local convergence for an eighth order method for solving equations and systems of equations

2019 ◽  
Vol 8 (1) ◽  
pp. 74-79
Author(s):  
Ioannis K. Argyros ◽  
Santhosh George

AbstractThe aim of this study is to extend the applicability of an eighth convergence order method from thek−dimensional Euclidean space to a Banach space setting. We use hypotheses only on the first derivative to show the local convergence of the method. Earlier studies use hypotheses up to the eighth derivative although only the first derivative and a divided difference of order one appear in the method. Moreover, we provide computable error bounds based on Lipschitz-type functions.

Algorithms ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 25
Author(s):  
Janak Raj Sharma ◽  
Sunil Kumar ◽  
Ioannis K. Argyros

We discuss the local convergence of a derivative-free eighth order method in a Banach space setting. The present study provides the radius of convergence and bounds on errors under the hypothesis based on the first Fréchet-derivative only. The approaches of using Taylor expansions, containing higher order derivatives, do not provide such estimates since the derivatives may be nonexistent or costly to compute. By using only first derivative, the method can be applied to a wider class of functions and hence its applications are expanded. Numerical experiments show that the present results are applicable to the cases wherein previous results cannot be applied.


Author(s):  
Ioannis K. Argyros ◽  
Munish Kansal ◽  
V. Kanwar

Abstract We present a local convergence analysis of an eighth-order method for approximating a locally unique solution of a non-linear equation. Earlier studies such as have shown convergence of these methods under hypotheses up to the seventh derivative of the function although only the first derivative appears in the method. In this study, we expand the applicability of these methods using only hypotheses up to the first derivative of the function. This way the applicability of these methods is extended under weaker hypotheses. Moreover, the radius of convergence and computable error bounds on the distances involved are also given in this study. Numerical examples are also presented in this study.


2020 ◽  
pp. 102-109
Author(s):  
Ioannis K. Argyros ◽  
Santhosh George

The local convergence analysis of iterative methods is important since it demonstrates the degree of diffculty for choosing initial points. In the present study, we introduce generalized multi-step high order methods for solving nonlinear equations. The local convergence analysis is given using hypotheses only on the first derivative which actually appears in the methods in contrast to earlier works using hypotheses on higher order derivatives. This way we extend the applicability of these methods. The analysis includes computable radius of convergence as well as error bounds based on Lipschitz-type conditions not given in earlier studies. Numerical examples conclude this study.


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3106
Author(s):  
Samundra Regmi ◽  
Christopher I. Argyros ◽  
Ioannis K. Argyros ◽  
Santhosh George

We develop a unified convergence analysis of three-step iterative schemes for solving nonlinear Banach space valued equations. The local convergence order has been shown before to be five on the finite dimensional Euclidean space assuming Taylor expansions and the existence of the sixth derivative not on these schemes. So, the usage of them is restricted six or higher differentiable mappings. But in our paper only the first Frèchet derivative is utilized to show convergence. Consequently, the scheme is expanded. Numerical applications are also given to test convergence.


Author(s):  
Ioannis K. Argyros ◽  
Santhosh George

Abstract The aim of this article is to provide the local convergence analysis of two novel competing sixth convergence order methods for solving equations involving Banach space valued operators. Earlier studies have used hypotheses reaching up to the sixth derivative but only the first derivative appears in these methods. These hypotheses limit the applicability of the methods. That is why we are motivated to present convergence analysis based only on the first derivative. Numerical examples where the convergence criteria are tested are provided. It turns out that in these examples the criteria in the earlier works are not satisfied, so these results cannot be used to solve equations but our results can be used.


2018 ◽  
Vol 27 (1) ◽  
pp. 01-08
Author(s):  
IOANNIS K. ARGYROS ◽  
◽  
GEORGE SANTHOSH ◽  

We present a semi-local convergence analysis for a Newton-like method to approximate solutions of equations when the derivative is not necessarily non-singular in a Banach space setting. In the special case when the equation is defined on the real line the convergence domain is improved for this method when compared to earlier results. Numerical results where earlier results cannot apply but the new results can apply to solve nonlinear equations are also presented in this study.


Algorithms ◽  
2015 ◽  
Vol 8 (3) ◽  
pp. 645-655 ◽  
Author(s):  
Ioannis Argyros ◽  
Ramandeep Behl ◽  
S.S. Motsa

Foundations ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 114-127
Author(s):  
Samundra Regmi ◽  
Christopher I. Argyros ◽  
Ioannis K. Argyros ◽  
Santhosh George

The celebrated Traub’s method involving Banach space-defined operators is extended. The main feature in this study involves the determination of a subset of the original domain that also contains the Traub iterates. In the smaller domain, the Lipschitz constants are smaller too. Hence, a finer analysis is developed without the usage of additional conditions. This methodology applies to other methods. The examples justify the theoretical results.


2019 ◽  
Vol 28 (1) ◽  
pp. 19-26
Author(s):  
IOANNIS K. ARGYROS ◽  
◽  
SANTHOSH GEORGE ◽  

We present the local as well as the semi-local convergence of some iterative methods free of derivatives for Banach space valued operators. These methods contain the secant and the Kurchatov method as special cases. The convergence is based on weak hypotheses specializing to Lipschitz continuous or Holder continuous hypotheses. The results are of theoretical and practical interest. In particular the method is compared favorably ¨ to other methods using concrete numerical examples to solve systems of equations containing a nondifferentiable term.


Sign in / Sign up

Export Citation Format

Share Document