scholarly journals Development and Testing of a Roots Pump for Hydrogen Recirculation in Fuel Cell System

2020 ◽  
Vol 10 (22) ◽  
pp. 8091
Author(s):  
Linfen Xing ◽  
Jianmei Feng ◽  
Wenqing Chen ◽  
Ziyi Xing ◽  
Xueyuan Peng

In this paper, the development and testing of a Roots pump with a new rotor profile for hydrogen recirculation in the fuel cell system are presented. The design method of the rotor profile, port position, and structure of the pump is presented. A prototype of a three-lobe Roots pump with helical rotors was fabricated, and its performance was experimentally tested. The measured data show that the effect of the pressure difference on the flow rate and volumetric efficiency of the Roots pump is the most significant, while the effect of suction pressure is limited. It is concluded that the leakage rather than flow resistance is the key factor, which has a major influence on volumetric and isentropic efficiency. The comparison of the performance is also given by the measured results of the same Roots pump working with air, helium, and hydrogen. Finally, the successful integration of the Roots pumps into three PEM fuel cell systems is reported and the optimal operating parameters of the Roots pump in the systems under various loads are also presented. It is found that the performance of the Roots pump integrated into the fuel cell system is better than that measured with pure hydrogen on the test rig. The performance maps composed of all the measured data of the Roots pump are very helpful for the optimal design and operation of the fuel cell system.

Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 331 ◽  
Author(s):  
Tae-Ho Eom ◽  
Jin-Wook Kang ◽  
Jintae Kim ◽  
Min-Ho Shin ◽  
Jung-Hyo Lee ◽  
...  

In this paper, a voltage drop compensation method for hybrid hydrogen fuel cell battery system, with a hydrogen recirculation powering a forklift, is studied. During recirculating hydrogen fuel to recycle hydrogen that has not reacted enough at the system, impurities can be mixed with the hydrogen fuel. This leads to low hydrogen concentration and a drop in the output voltage of the fuel cell system. In excessive voltage drop, the fuel cell system can be shutdown. This paper proposes a voltage drop compensation method using an electrical control algorithm to prevent system shutdown by reducing voltage drop. Technically, voltage drop is typically caused by three kinds of factors: (1) The amount of pure hydrogen supply; (2) the temperature of fuel cell stacks; and (3) the current density to catalysts of the fuel cell. The proposed compensation method detects voltage drop caused by those factors, and generates compensation signals for a controller of a DC–DC converter connecting to the output of the fuel cell stack; thus, the voltage drop is reduced by decreasing output current. At the time, insufficient output current to a load is supplied from the batteries. In this paper, voltage drop caused by the abovementioned three factors is analyzed, and the operating principle of the proposed compensation method is specified. To verify this operation and the feasibility of the proposed method, experiments are conducted by applying it to a 10 kW hybrid fuel cell battery system for a forklift.


2018 ◽  
Vol 2018.93 (0) ◽  
pp. 812
Author(s):  
Takehiko ISE ◽  
Yoshito USUKI ◽  
Miki DOHKOSHI ◽  
Junji MORITA ◽  
Akinori YUKIMASA ◽  
...  

Author(s):  
Deyi Xue ◽  
Zuomin Dong

Abstract In this work the optimization-based, integrated concurrent design method is extended to a general mechanical system — the transportation fuel cell system. A general optimal design model considering both functional performance and production costs is first introduced. Mathematical models of the functional performance and production costs of the Ballard fuel cell system are then discussed. A joint performance and cost optimization is carried out using the Ballard fuel cell system to demonstrate the approach. The optimization concurrently takes into account of two functional performance aspects and production costs to identify the optimal values of two key design variables. The work is a continuation of the authors’ earlier research on integrated concurrent engineering design.


2012 ◽  
Vol 132 (10) ◽  
pp. 997-1002 ◽  
Author(s):  
Koji Maekawa ◽  
Kenji Takahara ◽  
Toshinori Kajiwara

2011 ◽  
Vol 131 (12) ◽  
pp. 927-935
Author(s):  
Yusuke Doi ◽  
Deaheum Park ◽  
Masayoshi Ishida ◽  
Akitoshi Fujisawa ◽  
Shinichi Miura

Sign in / Sign up

Export Citation Format

Share Document