scholarly journals Optimal Estimation of Proton Exchange Membrane Fuel Cells Parameter Based on Coyote Optimization Algorithm

2021 ◽  
Vol 11 (5) ◽  
pp. 2052
Author(s):  
Amlak Abaza ◽  
Ragab A. El-Sehiemy ◽  
Karar Mahmoud ◽  
Matti Lehtonen ◽  
Mohamed M. F. Darwish

In recent years, the penetration of fuel cells in distribution systems is significantly increased worldwide. The fuel cell is considered an electrochemical energy conversion component. It has the ability to convert chemical to electrical energies as well as heat. The proton exchange membrane (PEM) fuel cell uses hydrogen and oxygen as fuel. It is a low-temperature type that uses a noble metal catalyst, such as platinum, at reaction sites. The optimal modeling of PEM fuel cells improves the cell performance in different applications of the smart microgrid. Extracting the optimal parameters of the model can be achieved using an efficient optimization technique. In this line, this paper proposes a novel swarm-based algorithm called coyote optimization algorithm (COA) for finding the optimal parameter of PEM fuel cell as well as PEM stack. The sum of square deviation between measured voltages and the optimal estimated voltages obtained from the COA algorithm is minimized. Two practical PEM fuel cells including 250 W stack and Ned Stack PS6 are modeled to validate the capability of the proposed algorithm under different operating conditions. The effectiveness of the proposed COA is demonstrated through the comparison with four optimizers considering the same conditions. The final estimated results and statistical analysis show a significant accuracy of the proposed method. These results emphasize the ability of COA to estimate the parameters of the PEM fuel cell model more precisely.

2004 ◽  
Vol 19 (6) ◽  
pp. 1723-1729 ◽  
Author(s):  
Neil Aukland ◽  
Abdellah Boudina ◽  
David S. Eddy ◽  
Joseph V. Mantese ◽  
Margarita P. Thompson ◽  
...  

During the operation of proton exchange membrane (PEM) fuel cells, a high-resistance oxide is often formed on the cathode surface of base metal bipolar plates. Over time, this corrosion mechanism leads to a drop in fuel cell efficiency and potentially to complete failure. To address this problem, we have developed alloys capable of forming oxides that are both conductive and chemically stable under PEM fuel cell operating conditions. Five alloys of titanium with tantalum or niobium were investigated. The oxides were formed on the alloys by cyclic voltammetry in solutions mimicking the cathode- and anode-side environment of a PEM fuel cell. The oxides of all tested alloys had lower surface resistance than the oxide of pure titanium. We also investigated the chemical durability of Ti–Nb and Ti–Ta alloys in more concentrated solutions beyond those typically found in PEM fuel cells. The oxide films formed on Ti–Nb and Ti–Ta alloys remained conductive and chemically stable in these concentrated solutions. The stability of the oxide films was evaluated; Ti alloys having 3% Ta and Nb were identified as potential candidates for bipolar plate materials.


2018 ◽  
Vol 388 ◽  
pp. 350-360 ◽  
Author(s):  
Chang Jie Li ◽  
Ye Liu ◽  
Zhe Shu Ma

An irreversible model of proton exchange membrane fuel cells working at steady-state is established, in which the irreversibility resulting from overpotentials, internal currents and leakage currents are taken into account.In this paper, the irreversibility of fuel cell is expounded mainly from electrochemistry. The general performance characteristic curves are generated including output voltage, output power and output efficiency. In addition, the irreversibility of a class of PEMFC is studied by changing the operating conditions (controllable factors) of the fuel cell, including effect of operating temperature, operating pressure and leakage current. The results provide a theoretical basis for both the operation and optimal design of real PEM fuel cells.


2016 ◽  
Vol 839 ◽  
pp. 165-169 ◽  
Author(s):  
Thomas Luschtinetz ◽  
Andreas Sklarow ◽  
Johannes Gulden

Liquid organic hydrogen carriers (LOHC) are a promising form to store hydrogen. However, the process of dehydrogenation has to be demonstrated for applications with proton exchange membrane (PEM) fuel cells which require very pure hydrogen. Here we document the measured degradation effects due to CO contamination on a PEM fuel cell that is supplied with hydrogen from a LOHC and we want to use later in a maritime application.


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Chao Si ◽  
Xiao-Dong Wang ◽  
Wei-Mon Yan ◽  
Tian-Hu Wang

Water transport and the corresponding water management strategy in proton exchange membrane (PEM) fuel cells are quite critical for the improvement of the cell performance. Accuracy modeling of water transport in porous electrodes strongly depends on the appropriate constitutive relationship for capillary pressure which is referred to aspc-scorrelation, wherepcis the capillary pressure andsis the fraction of saturation in the pores. In the present PEM fuel cell two-phase models, the Leverett-Udellpc-scorrelation is widely utilized which is proposed based on fitting the experimental data for packed sands. However, the size and structure of pores for the commercial porous electrodes used in PEM fuel cells differ from those for the packed sands significantly. As a result, the Leverett-Udell correlation should be improper to characterize the two-phase transport in the porous electrodes. In the recent decade, many efforts were devoted to measuring the capillary pressure data and developing newpc-scorrelations. The objective of this review is to review the most significant developments in recent years concerning the capillary pressure measurements and the developedpc-scorrelations. It is expected that this review will be beneficial to develop the improved PEM fuel cell two-phase model.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1861 ◽  
Author(s):  
Jorge Escorihuela ◽  
Jessica Olvera-Mancilla ◽  
Larissa Alexandrova ◽  
L. Felipe del Castillo ◽  
Vicente Compañ

The rapid increasing of the population in combination with the emergence of new energy-consuming technologies has risen worldwide total energy consumption towards unprecedent values. Furthermore, fossil fuel reserves are running out very quickly and the polluting greenhouse gases emitted during their utilization need to be reduced. In this scenario, a few alternative energy sources have been proposed and, among these, proton exchange membrane (PEM) fuel cells are promising. Recently, polybenzimidazole-based polymers, featuring high chemical and thermal stability, in combination with fillers that can regulate the proton mobility, have attracted tremendous attention for their roles as PEMs in fuel cells. Recent advances in composite membranes based on polybenzimidazole (PBI) for high temperature PEM fuel cell applications are summarized and highlighted in this review. In addition, the challenges, future trends, and prospects of composite membranes based on PBI for solid electrolytes are also discussed.


2006 ◽  
Vol 4 (4) ◽  
pp. 468-473 ◽  
Author(s):  
Alessandra Perna

The purpose of this work is to investigate, by a thermodynamic analysis, the effects of the process variables on the performance of an autothermal reforming (ATR)-based fuel processor, operating on ethanol as fuel, integrated into an overall proton exchange membrane (PEM) fuel cell system. This analysis has been carried out finding the better operating conditions to maximize hydrogen yield and to minimize CO carbon monoxide production. In order to evaluate the overall efficiency of the system, PEM fuel cell operations have been analyzed by an available parametric model.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 498
Author(s):  
Andrzej Wilk ◽  
Daniel Węcel

Currently, fuel cells are increasingly used in industrial installations, means of transport, and household applications as a source of electricity and heat. The paper presents the results of experimental tests of a Proton Exchange Membrane Fuel Cell (PEMFC) at variable load, which characterizes the cell’s operation in real installations. A detailed analysis of the power needed for operation fuel cell auxiliary devices (own needs power) was carried out. An analysis of net and gross efficiency was carried out in various operating conditions of the device. The measurements made show changes in the performance of the fuel cell during step changing or smooth changing of an electric load. Load was carried out as a change in the current or a change in the resistance of the receiver. The analysis covered the times of reaching steady states and the efficiency of the fuel cell system taking into account auxiliary devices. In the final part of the article, an analysis was made of the influence of the fuel cell duration of use on obtained parameters. The analysis of the measurement results will allow determination of the possibility of using fuel cells in installations with a rapidly changing load profile and indicate possible solutions to improve the performance of the installation.


2011 ◽  
Vol 110-116 ◽  
pp. 2301-2307
Author(s):  
P. Buaphad ◽  
P. Thamboon ◽  
C. Tengsirivattana ◽  
J. Saisut ◽  
K. Kusoljariyakul ◽  
...  

This work reports an application of reflective terahertz (THz) imaging for identification of water distribution in the proton exchange membrane (PEM) fuel cell. The THz radiation generated from relativistic femtosecond electron bunches is employed as a high intensity source. The PEM fuel cell is designed specifically for the measurement allowing THz radiation to access the flow field region. The THz image is constructed from reflected radiation revealing absorptive area of water presence. The technique is proved to be a promising tool for studying water management in the PEM fuel cell. Detailed experimental setup and results will be described.


2005 ◽  
Vol 2 (2) ◽  
pp. 121-135 ◽  
Author(s):  
A. Mawardi ◽  
F. Yang ◽  
R. Pitchumani

The performance of fuel cells can be significantly improved by using optimum operating conditions that maximize the power density subject to constraints. Despite its significance, relatively scant work is reported in the open literature on the model-assisted optimization of fuel cells. In this paper, a methodology for model-based optimization is presented by considering a one-dimensional nonisothermal description of a fuel cell operating on reformate feed. The numerical model is coupled with a continuous search simulated annealing optimization scheme to determine the optimum solutions for selected process constraints. Optimization results are presented over a range of fuel cell design parameters to assess the effects of membrane thickness, electrode thickness, constraint values, and CO concentration on the optimum operating conditions.


Sign in / Sign up

Export Citation Format

Share Document