scholarly journals Adaptive Neural Network Control of Zero-Speed Vessel Fin Stabilizer Based on Command Filter

2022 ◽  
Vol 12 (2) ◽  
pp. 754
Author(s):  
Ziteng Sun ◽  
Chao Chen ◽  
Guibing Zhu

This paper proposes a zero-speed vessel fin stabilizer adaptive neural network control strategy based on a command filter for the problem of large-angle rolling motion caused by adverse sea conditions when a vessel is at low speed down to zero. In order to avoid the adverse effects of the high-frequency part of the marine environment on the vessel rolling control system, a command filter is introduced in the design of the controller and a command filter backstepping control method is designed. An auxiliary dynamic system (ADS) is constructed to correct the feedback error caused by input saturation. Considering that the system has unknown internal parameters and unmodeled dynamics, and is affected by unknown disturbances from the outside, the neural network technology and nonlinear disturbance observer are fused in the proposed design, which not only combines the advantages of the two but also overcomes the limitations of the single technique itself. Through Lyapunov theoretical analysis, the stability of the control system is proved. Finally, the simulation results also verify the effectiveness of the control method.

CONVERTER ◽  
2021 ◽  
pp. 709-715
Author(s):  
Peibo Li, Peixing Li, Chen Yanpeng

An adaptive neural network control method was proposed to solve the problems such as unstable motion and large trajectory tracking error when the robot arm was disturbed by the external environment.The dynamic equations of the manipulator were given and the dynamic characteristics of the manipulator were studied by using the positive feedback neural network. Then the adaptive neural network control system was designed, and the stability and convergence of the closed-loop system were proved by the Lyapunov function. Later, the model diagram of the robot arm was established, and the dynamics parameters of the manipulator were simulated by MATLAB /Simulink software.At the same time, they were compared with the simulation results of the PID control system for analysis.The simulation results showed that the trajectory tracking error and input torque fluctuation were smaller when the trajectory of the robot arm was disturbed by the external world. When adopting the control method of the adaptive neural network, the robot arm could improve the control precision of the trajectory, thus reducing the jitter of the robot arm motion.


Sign in / Sign up

Export Citation Format

Share Document