scholarly journals Real-Time Musical Conducting Gesture Recognition Based on a Dynamic Time Warping Classifier Using a Single-Depth Camera

2019 ◽  
Vol 9 (3) ◽  
pp. 528 ◽  
Author(s):  
Fahn Chin-Shyurng ◽  
Shih-En Lee ◽  
Meng-Luen Wu

Gesture recognition is a human−computer interaction method, which is widely used for educational, medical, and entertainment purposes. Humans also use gestures to communicate with each other, and musical conducting uses gestures in this way. In musical conducting, conductors wave their hands to control the speed and strength of the music played. However, beginners may have a limited comprehension of the gestures and might not be able to properly follow the ensembles. Therefore, this paper proposes a real-time musical conducting gesture recognition system to help music players improve their performance. We used a single-depth camera to capture image inputs and establish a real-time dynamic gesture recognition system. The Kinect software development kit created a skeleton model by capturing the palm position. Different palm gestures were collected to develop training templates for musical conducting. The dynamic time warping algorithm was applied to recognize the different conducting gestures at various conducting speeds, thereby achieving real-time dynamic musical conducting gesture recognition. In the experiment, we used 5600 examples of three basic types of musical conducting gestures, including seven capturing angles and five performing speeds for evaluation. The experimental result showed that the average accuracy was 89.17% in 30 frames per second.

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Hyo-Rim Choi ◽  
TaeYong Kim

We propose a modified dynamic time warping (DTW) algorithm that compares gesture-position sequences based on the direction of the gestural movement. Standard DTW does not specifically consider the two-dimensional characteristic of the user’s movement. Therefore, in gesture recognition, the sequence comparison by standard DTW needs to be improved. The proposed gesture-recognition system compares the sequences of the input gesture’s position with gesture positions saved in the database and selects the most similar gesture by filtering out unrelated gestures. The suggested algorithm uses the cosine similarity of the movement direction at each moment to calculate the difference and reflects the characteristics of the gesture movement by using the ratio of the Euclidean distance and the proportional distance to the calculated difference. Selective spline interpolation assists in solving the issue of recognition-decline at instances of gestures. Through experiments with public databases (MSRC-12 and G3D), the suggested algorithm revealed an improved performance on both databases compared to other methods.


2013 ◽  
Vol 333-335 ◽  
pp. 849-855 ◽  
Author(s):  
Jiang Guo ◽  
Jun Cheng ◽  
Yu Guo ◽  
Jian Xin Pang

In this paper, we present a dynamic gesture recognition system. We focus on the visual sensory information to recognize human activity in form of hand movements from a small, predefined vocabulary. A fast and effective method is presented for hand detection and tracking at first for the trajectory extraction. A novel trajectory correction method is applied for simply but effectively trajectory correction. Gesture recognition is achieved by means of a matching technique by determining the distance between the unknown input direction code sequence and a set of previously defined templates. A dynamic time warping (DTW) algorithm is used to perform the time alignment and normalization by computing a temporal transformation allowing the two signals to be matched. Experiment results show our proposed gesture recognition system achieve well result in real time.


2021 ◽  
Vol 11 (4) ◽  
pp. 1933
Author(s):  
Hiroomi Hikawa ◽  
Yuta Ichikawa ◽  
Hidetaka Ito ◽  
Yutaka Maeda

In this paper, a real-time dynamic hand gesture recognition system with gesture spotting function is proposed. In the proposed system, input video frames are converted to feature vectors, and they are used to form a posture sequence vector that represents the input gesture. Then, gesture identification and gesture spotting are carried out in the self-organizing map (SOM)-Hebb classifier. The gesture spotting function detects the end of the gesture by using the vector distance between the posture sequence vector and the winner neuron’s weight vector. The proposed gesture recognition method was tested by simulation and real-time gesture recognition experiment. Results revealed that the system could recognize nine types of gesture with an accuracy of 96.6%, and it successfully outputted the recognition result at the end of gesture using the spotting result.


2017 ◽  
Vol 24 (2) ◽  
pp. 17-26
Author(s):  
Mustafa Yagimli ◽  
Huseyin Kursat Tezer

Abstract The real-time voice command recognition system used for this study, aims to increase the situational awareness, therefore the safety of navigation, related especially to the close manoeuvres of warships, and the courses of commercial vessels in narrow waters. The developed system, the safety of navigation that has become especially important in precision manoeuvres, has become controllable with voice command recognition-based software. The system was observed to work with 90.6% accuracy using Mel Frequency Cepstral Coefficients (MFCC) and Dynamic Time Warping (DTW) parameters and with 85.5% accuracy using Linear Predictive Coding (LPC) and DTW parameters.


2022 ◽  
Vol 64 (1) ◽  
pp. 38-44
Author(s):  
Maosheng Gao ◽  
Zhiwu Shang ◽  
Wanxiang Li ◽  
Shiqi Qian ◽  
Yan Yu

A sudden fault in a rolling bearing (RB) results in a large amount of downtime, which increases the cost of operation and maintenance. In this paper, a real-time diagnosis and trend prediction method for RBs is proposed. In this method, a novel resampling dynamic time warping (RDTW) algorithm is presented and two new time-domain indicators (NTDIRs) called TALAP and TRCKT are defined, which can describe the wear degree and trend of an RB inner ring wear fault (IRWF). TALAP and TRCKT are proposed by comprehensively considering the stability and sensitivity of existing time-domain indicators (TDIRs). First, RDTW is used to align the healthy vibration signal with the fault vibration signal. Then, the residual signal that can be used to monitor the running condition is obtained. TALAP and TRCKT of the residual signal are calculated to judge the degree of wear. When the wear limit is reached, a fault alarm is sent out and the downtime needed for replacement can be accurately indicated. The experimental results show that the method can perform accurate diagnosis and trend prediction of inner ring wear faults of RBs.


Sign in / Sign up

Export Citation Format

Share Document