scholarly journals Reversible Data Hiding in Encrypted Color Halftone Images with High Capacity

2019 ◽  
Vol 9 (24) ◽  
pp. 5311 ◽  
Author(s):  
Yu-Xia Sun ◽  
Bin Yan ◽  
Jeng-Shyang Pan ◽  
Hong-Mei Yang ◽  
Na Chen

In recent years, reversible data hiding (RDH) has become a research hotspot in the field of multimedia security that has aroused more and more researchers’ attention. Most of the existing RDH algorithms are aiming at continuous-tone images. For RDH in encrypted halftone images (RDH-EH), the original cover image cannot be recovered losslessly after the watermark is extracted. For some application scenarios such as medical or military images sharing, reversibility is critical. In this paper, a reversible data hiding scheme in encrypted color halftone images (RDH-ECH) is proposed. In the watermark embedding procedure, the cover image is copied into two identical images to increase redundancy. We use wet paper code to embed the watermark into the image blocks. Thus, the receiver only needs to process the image blocks by the check matrices in order to extract the watermarks. To increase embedding capacity, we embed three layers in the embedding procedure and combine the resulting images into one image for convenience of transmission. From the experimental results, it can be concluded that the original image can be restored entirely after the watermarks are extracted. Besides, for marked color halftone images, our algorithm can implement high embedding capacity and moderate visual quality.

2018 ◽  
Vol 27 (11) ◽  
pp. 1850175 ◽  
Author(s):  
Neeraj Kumar Jain ◽  
Singara Singh Kasana

The proposed reversible data hiding technique is the extension of Peng et al.’s technique [F. Peng, X. Li and B. Yang, Improved PVO-based reversible data hiding, Digit. Signal Process. 25 (2014) 255–265]. In this technique, a cover image is segmented into nonoverlapping blocks of equal size. Each block is sorted in ascending order and then differences are calculated on the basis of locations of its largest and second largest pixel values. Negative predicted differences are utilized to create empty spaces which further enhance the embedding capacity of the proposed technique. Also, the already sorted blocks are used to enhance the visual quality of marked images as pixels of these blocks are more correlated than the unsorted pixels of the block. Experimental results show the effectiveness of the proposed technique.


2014 ◽  
Vol 6 (1) ◽  
pp. 51-64 ◽  
Author(s):  
Shun Zhang ◽  
Tie-gang Gao ◽  
Fu-sheng Yang

A reversible data hiding scheme based on integer DWT and histogram modification is proposed. In the scheme, the cover media is firstly transformed by Integer DWT (Discrete Wavelet Transformation); then information is embedded through the modification of histograms of the middle and high frequency sub-bands of the DWT coefficients. In order to increase the embedding capacity, a multi-level scheme is proposed, which achieved both high embedding capacity and reversibility. Extensive experimental results have shown that the proposed scheme achieves both higher embedding capacity and lower distortion than spatial domain histogram modification based schemes; and it achieved better performance than integer DCT (Discrete Cosine Transformation) based histogram modification scheme.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Chunqiang Yu ◽  
Xianquan Zhang ◽  
Zhenjun Tang ◽  
Yan Chen ◽  
Jingyu Huang

Data hiding in encrypted image is a recent popular topic of data security. In this paper, we propose a reversible data hiding algorithm with pixel prediction and additive homomorphism for encrypted image. Specifically, the proposed algorithm applies pixel prediction to the input image for generating a cover image for data embedding, referred to as the preprocessed image. The preprocessed image is then encrypted by additive homomorphism. Secret data is finally embedded into the encrypted image via modular 256 addition. During secret data extraction and image recovery, addition homomorphism and pixel prediction are jointly used. Experimental results demonstrate that the proposed algorithm can accurately recover original image and reach high embedding capacity and good visual quality. Comparisons show that the proposed algorithm outperforms some recent algorithms in embedding capacity and visual quality.


2016 ◽  
Vol 25 (08) ◽  
pp. 1650091 ◽  
Author(s):  
Geeta Kasana ◽  
Kulbir Singh ◽  
Satvinder Singh Bhatia

This paper proposes a block-based high capacity steganography technique for digital images. The cover image is decomposed into blocks of equal size and the largest pixel of each block is found to embed the secret data bits and also the smallest pixel of each block is used for embedding to enhance the capacity. Embedding of secret data is performed using the concept that the pixel of a cover image has only two states — even and odd. Multilevel approach is also combined in the proposed technique to achieve high embedding capacity. In order to make the proposed technique more secure, a key is generated using embedding levels, block size, pixel embedding way, encryption parameters, and starting blocks of each embedding levels. Embedding capacity and visual quality of stego images generated by the proposed steganography technique are higher than the existing techniques. Steganalysis tests have been performed to show the un-detectability and imperceptibility of the proposed technique.


2019 ◽  
Vol 11 (4) ◽  
pp. 118-129
Author(s):  
Bin Ma ◽  
Xiao-Yu Wang ◽  
Bing Li

A novel high capacity and security reversible data hiding scheme is proposed in this article, in which the secret data is represented by different orthogonal spreading sequences and repeatedly embedded into the cover image without disturbing each other in the light of Code Division Multiple Access (CDMA) technique, and thus the embedding capacity is enlarged. As most elements of orthogonal spreading sequences are mutually canceled in the process of repeated embedding, it keeps the distortion of the embedded image at a low level even with high embedding capacity. Moreover, only the receiver who has the spreading sequence and the embedding gain factor the same as the sender can extract the secret data and achieve the original image exactly, thus the proposed scheme achieves high embedding security than other schemes. The results of the experiment demonstrates that the CDMA based reversible data hiding scheme could achieve higher image quality at moderate-to-high embedding capacity compared with other state-of-the-art schemes.


2021 ◽  
Vol 11 (15) ◽  
pp. 6741
Author(s):  
Chia-Chen Lin ◽  
Thai-Son Nguyen ◽  
Chin-Chen Chang ◽  
Wen-Chi Chang

Reversible data hiding has attracted significant attention from researchers because it can extract an embedded secret message correctly and recover a cover image without distortion. In this paper, a novel, efficient reversible data hiding scheme is proposed for absolute moment block truncation code (AMBTC) compressed images. The proposed scheme is based on the high correlation of neighboring values in two mean tables of AMBTC-compressed images to further losslessly encode these values and create free space for containing a secret message. Experimental results demonstrated that the proposed scheme obtained a high embedding capacity and guaranteed the same PSNRs as the traditional AMBTC algorithm. In addition, the proposed scheme achieved a higher embedding capacity and higher efficiency rate than those of some previous schemes while maintaining an acceptable bit rate.


2020 ◽  
Vol 16 (3) ◽  
pp. 155014772091100
Author(s):  
Yi Chen ◽  
Hongxia Wang ◽  
Xiaoxu Tang ◽  
Yong Liu ◽  
Hanzhou Wu ◽  
...  

Developing the technology of reversible data hiding based on video compression standard, such as H.264/advanced video coding, has attracted increasing attention from researchers. Because it can be applied in some applications, such as error concealment and privacy protection. This has motivated us to propose a novel two-dimensional reversible data hiding method with high embedding capacity in this article. In this method, all selected quantized discrete cosine transform coefficients are first paired two by two. And then, each zero coefficient-pair can embed 3 information bits and the coefficient-pairs only containing one zero coefficient can embed 1 information bit. In addition, only one coefficient of each one of the rest coefficient-pairs needs to be changed for reversibility. Therefore, the proposed two-dimensional reversible data hiding method can obtain high embedding capacity when compared with the related work. Moreover, the proposed method leads to less degradation in terms of peak-signal-to-noise ratio, structural similarity index, and less impact on bit-rate increase.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1435
Author(s):  
Kai-Meng Chen

In this paper, we proposed a novel reversible data hiding method in encrypted image (RDHEI), which is based on the compression of pixel differences. In the proposed method, at the content owner’ side the image is divided into non-overlapping blocks, and a block-level image encryption scheme is used to generate the encrypted image, which partially retains spatial correlation in the blocks. Due to the spatial correlation, in each block the pixels are highly likely to be similar. Therefore, the pixel differences in all blocks are concentrated in a small range and can be compressed. By the compression of pixel differences, the data hider can vacate the room to accommodate secret data in the encrypted image without losing information. At the receiver’s side, the receiver can obtain secret data or retrieve the original image using different keys with no error. The experimental results demonstrate that, compared with existing methods, the proposed method can achieve a higher capacity and visual quality.


2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Jiann-Der Lee ◽  
Yaw-Hwang Chiou ◽  
Jing-Ming Guo

A novel reversible data-hiding scheme is proposed to embed secret data into a side-matched-vector-quantization- (SMVQ-) compressed image and achieve lossless reconstruction of a vector-quantization- (VQ-) compressed image. The rather random distributed histogram of a VQ-compressed image can be relocated to locations close to zero by SMVQ prediction. With this strategy, fewer bits can be utilized to encode SMVQ indices with very small values. Moreover, no indicator is required to encode these indices, which yields extrahiding space to hide secret data. Hence, high embedding capacity and low bit rate scenarios are deposited. More specifically, in terms of the embedding rate, the bit rate, and the embedding capacity, experimental results show that the performance of the proposed scheme is superior to those of the former data hiding schemes for VQ-based, VQ/SMVQ-based, and search-order-coding- (SOC-) based compressed images.


Sign in / Sign up

Export Citation Format

Share Document