scholarly journals Emission of PM2.5-Bound Polycyclic Aromatic Hydrocarbons from Biomass and Coal Combustion in China

Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1129
Author(s):  
Xinghua Li ◽  
Zihao Wang ◽  
Tailun Guo

Field measured PAH emissions from diverse sources in China are limited or even not available. In this study, the PM2.5-bound PAH emission factors (EFs) for typical biomass and coal combustion in China were determined on-site. The measured total PAH EFs were 24.5 mg/kg for household coal burning, 10.5–13.9 mg/kg for household biofuel burning, 8.1–8.6 mg/kg for biomass open burning, and 0.021–0.31 mg/kg for coal-fired boilers, respectively. These EF values were compared with previous studies. The sources profiles of PAHs for four sources were developed to use in chemical mass balance receptor modelling. BaP equivalent EFs (EFBaPeq) were calculated to evaluate PAH emission toxicity among different combustion sources, and were 6.81, 2.94–4.22, 1.59–3.62, and 0.0006–0.042 mg/kg for those four types of sources, respectively.

2014 ◽  
Vol 26 (1) ◽  
pp. 160-166 ◽  
Author(s):  
Chunmei Geng ◽  
Jianhua Chen ◽  
Xiaoyang Yang ◽  
Lihong Ren ◽  
Baohui Yin ◽  
...  

Atmosphere ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 412 ◽  
Author(s):  
Suwubinuer Rekefu ◽  
Dilinuer Talifu ◽  
Bo Gao ◽  
Yusan Turap ◽  
Mailikezhati Maihemuti ◽  
...  

PM2.5 and PM2.5–10 samples were simultaneously collected in Urumqi from January to December 2011, and 14 priority polycyclic aromatic hydrocarbons (PAHs) were determined. The mean concentrations of total PAHs in PM2.5 and PM2.5–10 were 20.90~844.22 ng m−3 and 19.65~176.5 ng m−3 respectively, with the highest in winter and the lowest in summer. Above 80% of PAHs were enriched in PM2.5, which showed remarkable seasonal variations compared to coarse particles. High molecular weight (HMW) PAHs were predominant in PM2.5 (46.61~85.13%), whereas the proportions of lower molecular weight (LMW) and HMW PAHs in PM2.5–10 showed a decreasing and an increasing trend, respectively, from spring to winter. The estimated concentrations of benzo[a]pyrene equivalent carcinogenic potency (BaPeq) in PM2.5 (10.49~84.52 ng m−3) were higher than that of in PM2.5–10 (1.15~13.33 ng m−3) except in summer. The estimated value of inhalation cancer risk in PM2.5 and PM2.5–10 were 1.63 × 10−4~7.35 × 10−3 and 9.94 × 10−5~1.16 × 10−3, respectively, far exceeding the health-based guideline level of 10−4. Diagnostic ratios and positive matrix factorization results demonstrated that PAHs in PM2.5 and PM2.5–10 were from similar sources, such as coal combustion, biomass burning, coking, and petroleum combustion, respectively. Coal combustion was the most important source for PAHs both in PM2.5 and PM2.5–10, accounting for 54.20% and 50.29%, respectively.


Sign in / Sign up

Export Citation Format

Share Document