biomass combustion
Recently Published Documents


TOTAL DOCUMENTS

975
(FIVE YEARS 316)

H-INDEX

62
(FIVE YEARS 9)

2022 ◽  
Vol 113 ◽  
pp. 385-393
Author(s):  
Hisam Samae ◽  
Surajit Tekasakul ◽  
Perapong Tekasakul ◽  
Worradorn Phairuang ◽  
Masami Furuuchi ◽  
...  

2022 ◽  
Vol 236 ◽  
pp. 111744
Author(s):  
Miao Yang ◽  
Jingyuan Zhang ◽  
Shenghui Zhong ◽  
Tian Li ◽  
Terese Løvås ◽  
...  

Author(s):  
Lei Deng ◽  
Jiahao Jiang ◽  
Yuan Tie ◽  
Shihao Ma ◽  
Gaofeng Fan ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Lulu Cui ◽  
Di Wu ◽  
Shuxiao Wang ◽  
Qingcheng Xu ◽  
Ruolan Hu ◽  
...  

Abstract. The increasing ozone (O3) pollution and high fraction of secondary organic aerosols (SOA) in fine particle mass highlighted the importance of volatile organic compounds (VOCs) in air pollution control. In this work, a campaign of comprehensive field observations was conducted at an urban site in Beijing, from December 2018 to November 2019, to identify the composition, sources, and secondary transformation potential of VOCs. The total mixing ratio of the 95 quantified VOCs (TVOC) observed in this study ranged from 5.5–118.7 ppbv with the mean value of 34.9 ppbv, and the contemporaneous mixing ratios of TVOC was significantly lower than those observed in 2014 and 2016, confirming the effectiveness of VOCs emission control measures in Beijing in recent years. Alkanes, OVOCs and halocarbons were the dominant chemical groups, accounting for 75–81 % of the TVOCs across the sampling months. High and low-O3/PM2.5 months as well as several O3/PM2.5 polluted days were identified during the sampling period. By deweathered calculation, we found that high O3/PM2.5 levels were due to both enhanced precursor emission levels and meteorological conditions favorable to O3 and PM2.5 production. The molar ratios of VOCs to NOX indicated that O3 formation was limited by VOCs during the whole sampling period. Diesel exhaust and industrial emission were identified as the major VOCs sources on both O3-polluted and PM2.5-polluted days based on positive matrix factorization (PMF) analysis, accounting for 46 % and 53 %, respectively. Moreover, higher proportion of oil/gas evaporation was observed on O3-polluted days (18 %) than that on O3-clean days (13 %), and higher proportion of coal/biomass combustion was observed on PM2.5-polluted days (18 %) than that on PM2.5-clean days (13 %). On the base of O3 formation impact, VOCs from fuel evaporation and diesel exhaust particularly toluene, xylenes, trans-2-butene, acrolein, methyl methacrylate, vinyl acetate, 1-butene and 1-hexene were the main contributors, illustrating the necessity of conducting emission controls on these pollution sources and species for alleviating O3 pollution. Instead, VOCs from diesel exhaust and coal/biomass combustion were found to be the dominant contributors for secondary organic aerosol formation potential (SOAFP), particularly the VOC species of toluene, 1-hexene, xylenes, ethylbenzene and styrene, and top priority should be given to these for the alleviation of haze pollution. The positive matrix factorization (PSCF) analysis showed that O3 and PM2.5 pollution was mainly affected by local emissions. This study provides insights for government to formulate effective VOCs control measures for air pollution in Beijing.


Author(s):  
Yalin Wang ◽  
Beibei Yan ◽  
Yu Wang ◽  
Jiahao Zhang ◽  
Xiaozhong Chen ◽  
...  

This paper presents comparative research on the combustion of coal, wheat, corn straw (CS), beet residues after extracting sugar (BR), and their blends, coal–corn straw blends (CCSBs), coal–wheat blends (CWBs), and coal–beet residue blends (CBRBs), using thermogravimetric (TG) analysis under 10, 20, 30, 40 and 50 °C/min. The test results indicate that CS and wheat show better combustion properties than BR, which are recommended to be used in biomass combustion. Under the heating rate of 20 °C/min, the coal has the longest thermal reaction time when compared with 10 and 30 °C/min. Adding coal to the biomass can improve the burnout level of biomass materials (BM), reduce the burning speed, and make the reaction more thorough. The authors employed the Flynn–Wall–Ozawa (FWO) method and the Kissinger–Akahira–Sunose (KAS) method to calculate kinetics parameters. It was proven that overall, the FWO method is better than the KAS method for coal, BM, and coal–biomass blends (CBBs), as it provides higher correlations in this study. It is shown that adding coal to wheat and BR decreases the activation energy and makes conversion more stable under particular α. The authors selected a wider range of biomass raw materials, made more kinds of CBB, and conducted more studies on different heating rates. This research can provide useful insights into how to choose agricultural residuals and how to use them.


2021 ◽  
Vol 21 (23) ◽  
pp. 17775-17805
Author(s):  
Alexandre Siméon ◽  
Fabien Waquet ◽  
Jean-Christophe Péré ◽  
Fabrice Ducos ◽  
François Thieuleux ◽  
...  

Abstract. Aerosol absorption is a key property to assess the radiative impacts of aerosols on climate at both global and regional scales. The aerosol physico-chemical and optical properties remain not sufficiently constrained in climate models, with difficulties to properly represent both the aerosol load and their absorption properties in clear and cloudy scenes, especially for absorbing biomass burning aerosols (BBA). In this study we focus on biomass burning (BB) particle plumes transported above clouds over the southeast Atlantic (SEA) region off the southwest coast of Africa, in order to improve the representation of their physico-chemical and absorption properties. The methodology is based on aerosol regional numerical simulations from the WRF-Chem coupled meteorology–chemistry model combined with a detailed inventory of BB emissions and various sets of innovative aerosol remote sensing observations, both in clear and cloudy skies from the POLDER-3/PARASOL space sensor. Current literature indicates that some organic aerosol compounds (OC), called brown carbon (BrOC), primarily emitted by biomass combustion absorb the ultraviolet-blue radiation more efficiently than pure black carbon (BC). We exploit this specificity by comparing the spectral dependence of the aerosol single scattering albedo (SSA) derived from the POLDER-3 satellite observations in the 443–1020 nm wavelength range with the SSA simulated for different proportions of BC, OC and BrOC at the source level, considering the homogeneous internal mixing state of particles. These numerical simulation experiments are based on two main constraints: maintaining a realistic aerosol optical depth both in clear and above cloudy scenes and a realistic BC/OC mass ratio. Modelling experiments are presented and discussed to link the chemical composition with the absorption properties of BBA and to provide estimates of the relative proportions of black, organic and brown carbon in the African BBA plumes transported over the SEA region for July 2008. The absorbing fraction of organic aerosols in the BBA plumes, i.e. BrOC, is estimated at 2 % to 3 %. The simulated mean SSA are 0.81 (565 nm) and 0.84 (550 nm) in clear and above cloudy scenes respectively, in good agreement with those retrieved by POLDER-3 (0.85±0.05 at 565 nm in clear sky and at 550 nm above clouds) for the studied period.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1627
Author(s):  
Jeeyoung Ham ◽  
Inseon Suh ◽  
Meehye Lee ◽  
Hyunseok Kim ◽  
Soyoung Kim

In order to identify the seasonal variability and source of carbonaceous aerosols in relation to haze occurrence, organic carbon (OC) and elemental carbon (EC) were continuously measured at the Taehwa Research Forest (TRF) near the Seoul metropolitan area from May 2013 to April 2014. For the entire experiment, the mean OC (5.1 µgC/m3) and EC (1.7 µgC/m3) concentrations of TRF were comparable to those of Seoul, with noticeably higher concentrations in winter and spring than in other seasons, and during haze days (6.6 ± 3.2 and 2.1 ± 1.0 μgC/m3) than during non-haze days (3.5 ± 2.2 and 1.3 ± 0.8 μgC/m3). The seasonal characteristics of OC and EC reveal the various sources of haze, including biomass combustion haze either transported for long distances or, in spring, from domestic regions, the greatest contribution of secondary organic carbon (SOC) in summer, and fossil fuel combustion in winter and fall. In addition, the seasonal OC/EC ratios between haze and non-haze days highlights that the increase in EC was more distinct than that of OC during haze episodes, thus suggesting that EC observed at a peri-urban forest site serves as a useful indicator for seasonally varying source types of haze aerosols in the study region.


2021 ◽  
Vol 2137 (1) ◽  
pp. 011001

The 2021 5th International Conference on Electrical, Mechanical and Computer Engineering (ICEMCE 2021) was held during October 29-31, 2021 as a virtual conference due to the growing concerns over the coronavirus outbreak (COVID-19), and in order to protect the well-being of our attendees, partners, and staff as our number one priority. The ICEMCE 2021 is organized by Xijing University and the focus of the conference is to establish an effective platform for institutions and industries to share ideas and to present the works of scientists, engineers, educators and students from all over the world. The organizing committee of conference is pleased to invite prospective authors to submit their original manuscripts to ICEMCE 2021. All papers, both invited and contributed, will be reviewed by two or three experts from the TC. This scientific event brings together more than 100 national and international researchers in Electrical, Mechanical and Computer Engineering. On top of the local participants coming from different national universities, international participants are also registered from different countries. During the conference, the conference model was divided into three sessions, including oral presentations, keynote speeches, and online Q&A discussion. In the first part, some scholars, whose submissions were selected as the excellent papers, were given about 5-10 minutes to perform their oral presentations one by one. Then in the second part, keynote speakers were each allocated 30-45 minutes to hold their speeches. In the second part, we invited three professors as our keynote speakers. Assoc. Prof. Lei Deng, our first keynote speaker, from School of Energy and Power Engineering, Xi’an Jiaotong University, China. His research interests include thermal conversion and utilization of biomass, combustion of fossil fuels and pollutant emission control, boiler and heat exchanger design, and comprehensive utilization of low-grade heat energy. Assoc. Prof. Xiaojun Shi, from School of Mechanical Engineering, Xi’an Jiaotong University, China. His research interests include thermal optimization of electromechanical systems and intelligent robot control. The finale keynote speaker, Assoc. Prof. Zhenpeng Qin, from Department of Mechanical Engineering, University of Texas at Dallas, USA. His mainly research area: Nanomaterials, Neuroscience, Point-of-Care Diagnostics. Their insightful speeches had triggered heated discussion in the third session of the conference. Every participant praised this conference for disseminating useful and insightful knowledge. The proceedings are a compilation of the accepted papers and represent an interesting outcome of the conference. Topics include but are not limited to the following areas: Electromagnetism and photonics, Smart grid, Electric energy processing, Instruments and meters and more related topics. All the papers have been through rigorous review and process to meet the requirements of international publication standard. We would like to acknowledge all of those who supported ICEMCE 2021. The help and contribution of each individual and institution was instrumental in the success of the conference. In particular, we would like to thank the organizing committee for its valuable inputs in shaping the conference program and reviewing the submitted papers. The Committee of ICEMCE 2021 List of Committee member is available in this pdf.


Fuel ◽  
2021 ◽  
pp. 122742
Author(s):  
Iñaki Adánez-Rubio ◽  
Iván Samprón ◽  
María Teresa Izquierdo ◽  
Alberto Abad ◽  
Pilar Gayán ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document