scholarly journals Block Generalized Locally Toeplitz Sequences: From the Theory to the Applications

Axioms ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 49 ◽  
Author(s):  
Carlo Garoni ◽  
Mariarosa Mazza ◽  
Stefano Serra-Capizzano

The theory of generalized locally Toeplitz (GLT) sequences is a powerful apparatus for computing the asymptotic spectral distribution of matrices An arising from virtually any kind of numerical discretization of differential equations (DEs). Indeed, when the mesh fineness parameter n tends to infinity, these matrices An give rise to a sequence {An}n, which often turns out to be a GLT sequence or one of its “relatives”, i.e., a block GLT sequence or a reduced GLT sequence. In particular, block GLT sequences are encountered in the discretization of systems of DEs as well as in the higher-order finite element or discontinuous Galerkin approximation of scalar DEs. Despite the applicative interest, a solid theory of block GLT sequences has been developed only recently, in 2018. The purpose of the present paper is to illustrate the potential of this theory by presenting a few noteworthy examples of applications in the context of DE discretizations.

2019 ◽  
Vol 35 ◽  
pp. 204-222
Author(s):  
Carlo Garoni ◽  
Stefano Serra-Capizzano

The theory of block generalized locally Toeplitz (GLT) sequences is a powerful apparatus for computing the spectral distribution of block-structured matrices arising from the discretization of differential problems, with a special reference to systems of differential equations (DEs) and to the higher-order finite element or discontinuous Galerkin approximation of both scalar and vectorial DEs. In the present paper, the theory of block GLT sequences is extended by proving that $\{f(A_n)\}_n$ is a block GLT sequence as long as $f$ is continuous and $\{A_n\}_n$ is a block GLT sequence formed by Hermitian matrices. It is also provided a relevant application of this result to the computation of the distribution of the numerical eigenvalues obtained from the higher-order isogeometric Galerkin discretization of second-order variable-coefficient differential eigenvalue problems (a topic of interest not only in numerical analysis but also in engineering).


Sign in / Sign up

Export Citation Format

Share Document