scholarly journals Optimal Genetic Design of Type-1 and Interval Type-2 Fuzzy Systems for Blood Pressure Level Classification

Axioms ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 8 ◽  
Author(s):  
Juan Guzmán ◽  
Ivette Miramontes ◽  
Patricia Melin ◽  
German Prado-Arechiga

The use of artificial intelligence techniques such as fuzzy logic, neural networks and evolutionary computation is currently very important in medicine to be able to provide an effective and timely diagnosis. The use of fuzzy logic allows to design fuzzy classifiers, which have fuzzy rules and membership functions, which are designed based on the experience of an expert. In this particular case a fuzzy classifier of Mamdani type was built, with 21 rules, with two inputs and one output and the objective of this classifier is to perform blood pressure level classification based on knowledge of an expert which is represented in the fuzzy rules. Subsequently different architectures were made in type-1 and type-2 fuzzy systems for classification, where the parameters of the membership functions used in the design of each architecture were adjusted, which can be triangular, trapezoidal and Gaussian, as well as how the fuzzy rules are optimized based on the ranges established by an expert. The main contribution of this work is the design of the optimized interval type-2 fuzzy system with triangular membership functions. The final type-2 system has a better classification rate of 99.408% than the type-1 classifier developed previously in “Design of an optimized fuzzy classifier for the diagnosis of blood pressure with a new computational method for expert rule optimization” with 98%. In addition, we also obtained a better classification rate than the other architectures proposed in this work.

Algorithms ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 206 ◽  
Author(s):  
Ivette Miramontes ◽  
Juan Guzman ◽  
Patricia Melin ◽  
German Prado-Arechiga

In this paper, the optimal designs of type-1 and interval type-2 fuzzy systems for the classification of the heart rate level are presented. The contribution of this work is a proposed approach for achieving the optimal design of interval type-2 fuzzy systems for the classification of the heart rate in patients. The fuzzy rule base was designed based on the knowledge of experts. Optimization of the membership functions of the fuzzy systems is done in order to improve the classification rate and provide a more accurate diagnosis, and for this goal the Bird Swarm Algorithm was used. Two different type-1 fuzzy systems are designed and optimized, the first one with trapezoidal membership functions and the second with Gaussian membership functions. Once the best type-1 fuzzy systems have been obtained, these are considered as a basis for designing the interval type-2 fuzzy systems, where the footprint of uncertainty was optimized to find the optimal representation of uncertainty. After performing different tests with patients and comparing the classification rate of each fuzzy system, it is concluded that fuzzy systems with Gaussian membership functions provide a better classification than those designed with trapezoidal membership functions. Additionally, tests were performed with the Crow Search Algorithm to carry out a performance comparison, with Bird Swarm Algorithm being the one with the best results.


2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Sadegh Aminifar ◽  
Arjuna Marzuki

This paper studies uncertainty and its effect on system response displacement. The paper also describes how IT2MFs (interval type-2 membership functions) differentiate from T1MFs (type-1 membership functions) by adding uncertainty. The effect of uncertainty is modeled clearly by introducing a technique that describes how uncertainty causes membership degree reduction and changing the fuzzy word meanings in fuzzy logic controllers (FLCs). Several criteria are discussed for the measurement of the imbalance rate of internal uncertainty and its effect on system behavior. Uncertainty removal is introduced to observe the effect of uncertainty on the output. The theorem of uncertainty avoidance is presented for describing the role of uncertainty in interval type-2 fuzzy systems (IT2FSs). Another objective of this paper is to derive a novel uncertainty measure for IT2MFs with lower complexity and clearer presentation. Finally, for proving the affectivity of novel interpretation of uncertainty in IT2FSs, several investigations are done.


2015 ◽  
Vol 11 (9) ◽  
pp. 976-987 ◽  
Author(s):  
Andréia Alves dos Santos Schwaab ◽  
Silvia Modesto Nassar ◽  
Paulo José de Freitas Filho

Sign in / Sign up

Export Citation Format

Share Document