scholarly journals AGR4BS: A Generic Multi-Agent Organizational Model for Blockchain Systems

2021 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Hector Roussille ◽  
Önder Gürcan ◽  
Fabien Michel

Blockchain is a very attractive technology since it maintains a public, append-only, immutable and ordered log of transactions which guarantees an auditable ledger accessible by anyone. Blockchain systems are inherently interdisciplinary since they combine various fields such as cryptography, multi-agent systems, distributed systems, social systems, economy, and finance. Furthermore, they have a very active and dynamic ecosystem where new blockchain platforms and algorithms are developed continuously due to the interest of the public and the industries to the technology. Consequently, we anticipate a challenging and interdisciplinary research agenda in blockchain systems, built upon a methodology that strives to capture the rich process resulting from the interplay between the behavior of agents and the dynamic interactions among them. To be effective, however, modeling studies providing insights into blockchain systems, and appropriate description of agents paired with a generic understanding of their components are needed. Such studies will create a more unified field of blockchain systems that advances our understanding and leads to further insight. According to this perspective, in this study, we propose using a generic multi-agent organizational modeling for studying blockchain systems, namely AGR4BS. Concretely, we use the Agent/Group/Role (AGR) organizational modeling approach to identify and represent the generic entities which are common to blockchain systems. We show through four real case studies how this generic model can be used to model different blockchain systems. We also show briefly how it can be used for modeling three well-known attacks on blockchain systems.

Author(s):  
Nikola Vlahovic ◽  
Vlatko Ceric

Most economic and business systems are complex, dynamic, and nondeterministic systems. Different modeling techniques have been used for representing real life economic and business organizations either on a macro level (such as national economics) or micro level (such as business processes within a firm or strategies within an industry). Even though general computer simulation was used for modeling various systems (Zeigler, 1976) since the 1970s the limitation of computer resources did not allow for in-depth simulation of dynamic social phenomena. The dynamics of social systems and impact of the behavior of individual entities in social constructs were modeled using mathematical modeling or system dynamics. With the growing interest in multi agent systems that led to its standardization in the 1990s, multi agent systems were proposed for the use of modeling social systems (Gilbert & Conte, 1995). Multi agent simulation was able to provide a high level disintegration of the models and proper treatment of inhomogeneity and individualism of the agents, thus allowing for simulation of cooperation and competition. A number of simulation models were developed in the research of biological and ecological systems, such as models for testing the behavior and communication between social insects (bees and ants). Artificial systems for testing hypothesis about social order and norms, as well as ancient societies (Kohler, Gumerman, & Reynolds, 2005) were also simulated. Since then, agent-based modeling and simulation (ABMS) established itself as an attractive modeling technique (Klugl, 2001; Moss & Davidsson, 2001). Numerous software toolkits were released, such as Swarm, Repast, MASON and SeSAm. These toolkits make agent-based modeling easy enough to be attractive to practitioners from a variety of subject areas dealing with social interactions. They make agent-based modeling accessible to a large number of analysts with less programming experience.


Author(s):  
Jacques Ferber ◽  
Tiberiu Stratulat ◽  
John Tranier

In this chapter, we stress the importance of thinking a MAS in all its aspects (agents, environment, interactions, organizations, and institutions), using a more integral vision. We show that a genuine organizational approach has to take into account both the environment and the institutional part of MAS societies. Then, we propose the MASQ (Multi-Agent System based on Quadrants) meta-model, which constitutes an abstraction of the various aspects of an OCMAS (Organization Centered Multi-Agent Systems), extending AGR (Agent/Group/Role). MASQ is based on a four-quadrant framework, where the analysis and design of a system is performed along two axes: an interior/exterior dimension and an individual/collective dimension. We give a conceptual definition of this approach and we will show that it is possible to apply it to practical models.


2021 ◽  
Vol 36 ◽  
Author(s):  
Sondes Hattab ◽  
Wided Lejouad Chaari

Abstract Openness is a challenging property that may characterize multi-agent systems (MAS). It refers to their ability to deal with entities leaving and joining agent society over time. This property makes the MAS behaviour complex and difficult to study and analyze, hence the need for a representative model allowing its understanding. In this context, many models were defined in the literature and we propose to classify them into three categories: structural models, functional models and interactional models. The existing models were proposed either for representing structural openness or for modelling functional or interactional ones independently. But, none of them was oriented to represent MAS openness in a global way while considering its three aspects at once. Besides, each one was defined in order to realize a specific objective and in a particular domain of application. In this paper, we propose an evolving KAGR graph. The latter provides a common understanding of openness and unifies its structural, functional and interactional aspects in a generic way. Our model is finally tested and validated on a multi-agent rescue simulator.


10.29007/kqfk ◽  
2018 ◽  
Author(s):  
Teddy Bouziat ◽  
Valérie Camps ◽  
Stéphanie Combettes

This paper addresses the modeling and design of Systems of Systems (SoS) as well as inter multi-agent systems cooperation. It presents and illustrates a new generic model to describe formally SoS. Then, this model is used to propose a study of inter-AMAS (Adaptive Multi-Agent System) cooperation. Each AMAS, reified as a component-system of a SoS, uses a cooperative decision process in order to interact with other AMAS and to collectively give rise to a relevant overall function at the SoS level. The proposed model as well as the inter-AMAS study are instantiated to a simulated resources transportation problem.


2000 ◽  
Vol 09 (03) ◽  
pp. 171-207 ◽  
Author(s):  
FRANCES M. T. BRAZIER ◽  
FRANK CORNELISSEN ◽  
CATHOLIJN M. JONKER ◽  
JAN TREUR

In this paper, one of the informally described models of agent cooperation (Jennings, 1995) has been used to develop and formally specify a generic model of a cooperative agent (GCAM). The compositional development method for multi-agent systems DESIRE supported the principled design of this model of cooperation. To illustrate reusability of the generic model, two application domains have been addressed: collaborative engineering design, and Call Center support.


Sign in / Sign up

Export Citation Format

Share Document