scholarly journals Conformational Ensembles of an Intrinsically Disordered Protein pKID with and without a KIX Domain in Explicit Solvent Investigated by All-Atom Multicanonical Molecular Dynamics

Biomolecules ◽  
2012 ◽  
Vol 2 (1) ◽  
pp. 104-121 ◽  
Author(s):  
Koji Umezawa ◽  
Jinzen Ikebe ◽  
Mitsunori Takano ◽  
Haruki Nakamura ◽  
Junichi Higo

The phosphorylated kinase-inducible activation domain (pKID) adopts a helix–loop–helix structure upon binding to its partner KIX, although it is unstructured in the unbound state. The N-terminal and C-terminal regions of pKID, which adopt helices in the complex, are called, respectively, αA and αB. We performed all-atom multicanonical molecular dynamics simulations of pKID with and without KIX in explicit solvents to generate conformational ensembles. Although the unbound pKID was disordered overall, αA and αB exhibited a nascent helix propensity; the propensity of αA was stronger than that of αB, which agrees with experimental results. In the bound state, the free-energy landscape of αB involved two low free-energy fractions: native-like and non-native fractions. This result suggests that αB folds according to the induced-fit mechanism. The αB-helix direction was well aligned as in the NMR complex structure, although the αA helix exhibited high flexibility. These results also agree quantitatively with experimental observations. We have detected that the αB helix can bind to another site of KIX, to which another protein MLL also binds with the adopting helix. Consequently, MLL can facilitate pKID binding to the pKID-binding site by blocking the MLL-binding site. This also supports experimentally obtained results.

2016 ◽  
Vol 35 (8) ◽  
pp. 1813-1823 ◽  
Author(s):  
Alessandra Apicella ◽  
Matteo Marascio ◽  
Vincenzo Colangelo ◽  
Monica Soncini ◽  
Alfonso Gautieri ◽  
...  

2020 ◽  
Author(s):  
Alan Hicks ◽  
Cristian A. Escobar ◽  
Timothy A. Cross ◽  
Huan-Xiang Zhou

AbstractMany physiological and pathophysiological processes, including Mycobacterium tuberculosis (Mtb) cell division, may involve fuzzy membrane association by proteins via intrinsically disordered regions. The fuzziness is extreme when the conformation and pose of the bound protein and the composition of the proximal lipids are all highly dynamic. Here we tackled the challenge in characterizing the extreme fuzzy membrane association of the disordered, cytoplasmic N-terminal region (NT) of ChiZ, an Mtb divisome protein, by combining solution and solid-state NMR spectroscopy and molecular dynamics simulations. In a typical pose, NT is anchored to acidic membranes by Arg residues in the midsection. Competition for Arg interactions between lipids and acidic residues, all in the first half of NT, makes the second half more prominent in membrane association. This asymmetry is accentuated by membrane tethering of the downstream transmembrane helix. These insights into sequence-interaction relations may serve as a paradigm for understanding fuzzy membrane association.


2020 ◽  
Vol 22 (5) ◽  
pp. 2938-2948
Author(s):  
Ke Wang ◽  
Shangbo Ning ◽  
Yue Guo ◽  
Mojie Duan ◽  
Minghui Yang

The free energy landscapes of 4E-BP2 and its variants were obtained by replica-exchanged molecular dynamics, which elucidate the regulation mechanism of phosphorylation and mutations on the intrinsically disordered protein.


2021 ◽  
Author(s):  
F. Emil Thomasen ◽  
Francesco Pesce ◽  
Mette Ahrensback Roesgaard ◽  
Giulio Tesei ◽  
Kresten Lindorff-Larsen

AbstractCoarse-grained molecular dynamics simulations are a useful tool to determine conformational ensembles of intrinsically disordered proteins (IDPs). Here, we show that the coarse-grained force field Martini 3 underestimates the global dimensions of IDPs when compared with small angle X-ray scattering (SAXS) data. Increasing the strength of protein-water interactions favors more expanded conformations, improving agreement with SAXS data and alleviating problems with overestimated IDP-IDP interactions.


2018 ◽  
Author(s):  
Sunita Patel ◽  
Bal Krishnan ◽  
Ramakrishna V. Hosur ◽  
Kandala V. R. Chary

AbstractIntrinsically disordered proteins (IDPs) form a special category because they lack a unique well-folded 3D structure under physiological conditions. They play crucial role in cell signaling, regulatory functions and responsible for several diseases. Although, they are abundant in nature, only a small fraction of it has been characterized till date. Such proteins adopt a range of conformations and can undergo transformation from disordered-to-ordered state or vice-versa upon binding to ligand. Insights of such conformational transition is perplexing in several cases. In the present study, we characterized disordered as well as ordered states and the factors contributing the transitions through a mutational study by employing replica exchange molecular dynamics simulation on a βγ-crystallin. Most of the proteins within this superfamily are inherently ordered. However, Hahellin, although a member of βγ-crystallin, it is intrinsically disordered in its apo-form which takes a well-ordered βγ-crystallin fold upon binding to Ca2+. It is intriguing that the mutation at the 5th position of the canonical motif to Arg increases the domain stability in several ordered microbial βγ-crystallins with concomitant loss in Ca2+ binding affinity. We carried out similar Ser to Arg mutations at 5th position of the canonical motif for the first time in an intrinsically disordered protein to understand the mechanistic insights of conformational transition. Our study revealed that newly formed ionic and hydrogen bonding interactions at the canonical Ca2+ binding sites play crucial role in transforming the disordered conformation into ordered βγ-crystallin.Author summaryIntrinsically disordered proteins lack a unique ordered 3D structure under physiological condition. Although, they are abundant in nature, only a small fraction of these proteins has been characterized till date due to adaptation of multiple conformations and methodological limitation. βγ-crystallins are inherently ordered, however recently a small number of proteins within this superfamily have been identified as intrinsically disordered protein. Hahellin is one such protein which is intrinsically disordered in its apo-form but takes a well-ordered βγ-crystallin fold upon binding to Ca2+. In the present study, we decipher the underlying mechanism of disordered-to-ordered transition in Hahellin by mutations, employing replica exchange molecular dynamics simulations. Earlier experimental studies reported an increase in stabilization of the ordered βγ-crystallion upon mutation to Arg at 5th position of the canonical Ca2+ binding motifs, N/D-N/D-X1-X2-S/T-S. We performed similar Ser to Arg mutation in an intrinsically disordered Hahellin to get the mechanistic insights of the conformational transition in the absence of Ca2+. Our study revealed that several newly formed ionic and hydrogen bonding interactions contributed by the mutant residues are responsible for both intra- and inter-motif rigidification, resulting in overall stability of βγ-crystallin domain.


Sign in / Sign up

Export Citation Format

Share Document