conformational ensembles
Recently Published Documents


TOTAL DOCUMENTS

263
(FIVE YEARS 107)

H-INDEX

34
(FIVE YEARS 6)

Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 92
Author(s):  
Alexander Miguel Monzon ◽  
Damiano Piovesan ◽  
Monika Fuxreiter

Biomolecular condensates challenge the classical concepts of molecular recognition. The variable composition and heterogeneous conformations of liquid-like protein droplets are bottlenecks for high-resolution structural studies. To obtain atomistic insights into the organization of these assemblies, here we have characterized the conformational ensembles of specific disordered complexes, including those of droplet-driving proteins. First, we found that these specific complexes exhibit a high degree of conformational heterogeneity. Second, we found that residues forming contacts at the interface also sample many conformations. Third, we found that different patterns of contacting residues form the specific interface. In addition, we observed a wide range of sequence motifs mediating disordered interactions, including charged, hydrophobic and polar contacts. These results demonstrate that selective recognition can be realized by variable patterns of weakly defined interaction motifs in many different binding configurations. We propose that these principles also play roles in determining the selectivity of biomolecular condensates.


2022 ◽  
Author(s):  
Hilda Mirbaha ◽  
Dailu Chen ◽  
Vishruth Mullapudi ◽  
Sandi Jo Estill Terpack ◽  
Charles L. White ◽  
...  

Tau aggregation into ordered assemblies causes myriad neurodegenerative tauopathies. We previously reported that tau monomer exists in either inert (Mi) or seed-competent (Ms) conformational ensembles, and that Ms encodes strains, which are biologically active, self-propagating assemblies. We have previously isolated Ms from tauopathy brains, but it is unknown if disease begins with Ms formation followed by fibril assembly, or if Ms derives from fibrils and is an epiphenomenon. Consequently, we studied a tauopathy mouse model (PS19) that expresses full-length human (1N4R) tau containing a disease-associated mutation (P301S). Using tau repeat domain biosensor cells, we detected insoluble tau seeding activity at 2 months. We found insoluble tau protein assemblies by immunoblot at 3 months. We next immunopurified monomer from mice aged 1-6 weeks using size exclusion chromatography. We detected soluble seeding activity at 4 weeks, before insoluble material or larger assemblies, with assemblies ranging from n=1-3 tau units. By 5 and 6 weeks, large soluble assemblies had formed. This indicated the first detectable pathological forms of tau were Ms. We next tested for post-translational modifications of tau monomer from 1-6 weeks. We detected no phosphorylation unique to Ms in PS19 or Alzheimer disease brain. We conclude that tauopathy begins with formation of Ms monomer, whose activity is phosphorylation-independent. Ms self-assembles to form oligomers before it forms insoluble fibrils. The conversion of tau monomer from Mi to Ms thus constitutes the first detectable step in the initiation of tauopathy in this mouse model, with obvious implications for origins of disease in humans.


2021 ◽  
Vol 8 ◽  
Author(s):  
Cezary Czaplewski ◽  
Zhou Gong ◽  
Emilia A. Lubecka ◽  
Kai Xue ◽  
Chun Tang ◽  
...  

Many proteins can fold into well-defined conformations. However, intrinsically-disordered proteins (IDPs) do not possess a defined structure. Moreover, folded multi-domain proteins often digress into alternative conformations. Collectively, the conformational dynamics enables these proteins to fulfill specific functions. Thus, most experimental observables are averaged over the conformations that constitute an ensemble. In this article, we review the recent developments in the concept and methods for the determination of the dynamic structures of flexible peptides and proteins. In particular, we describe ways to extract information from nuclear magnetic resonance small-angle X-ray scattering (SAXS), and chemical cross-linking coupled with mass spectroscopy (XL-MS) measurements. All these techniques can be used to obtain ensemble-averaged restraints or to re-weight the simulated conformational ensembles.


2021 ◽  
Vol 118 (50) ◽  
pp. e2114494118
Author(s):  
Olga A. Nikolaitchik ◽  
Shuohui Liu ◽  
Jonathan P. Kitzrow ◽  
Yang Liu ◽  
Jonathan M. O. Rawson ◽  
...  

To generate infectious virus, HIV-1 must package two copies of its full-length RNA into particles. HIV-1 transcription initiates from multiple, neighboring sites, generating RNA species that only differ by a few nucleotides at the 5′ end, including those with one (1G) or three (3G) 5′ guanosines. Strikingly, 1G RNA is preferentially packaged into virions over 3G RNA. We investigated how HIV-1 distinguishes between these nearly identical RNAs using in-gel chemical probing combined with recently developed computational tools for determining RNA conformational ensembles, as well as cell-based assays to quantify the efficiency of RNA packaging into viral particles. We found that 1G and 3G RNAs fold into distinct structural ensembles. The 1G RNA, but not the 3G RNA, primarily adopts conformations with an intact polyA stem, exposed dimerization initiation site, and multiple, unpaired guanosines known to mediate Gag binding. Furthermore, we identified mutants that exhibited altered genome selectivity and packaged 3G RNA efficiently. In these mutants, both 1G and 3G RNAs fold into similar conformational ensembles, such that they can no longer be distinguished. Our findings demonstrate that polyA stem stability guides RNA-packaging selectivity. These studies also uncover the mechanism by which HIV-1 selects its genome for packaging: 1G RNA is preferentially packaged because it exposes structural elements that promote RNA dimerization and Gag binding.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jing Li ◽  
Jiabin Yan ◽  
Timothy A Springer

Integrin conformational ensembles contain two low-affinity states, bent-closed and extended-closed, and an active, high-affinity, extended-open state. It is widely thought that integrins must be activated before they bind ligand; however, one model holds that activation follows ligand binding. As ligand-binding kinetics are not only rate limiting for cell adhesion but also have important implications for the mechanism of activation, we measure them here for integrins α4β1 and α5β1 and show that the low-affinity states bind substantially faster than the high-affinity state. On and off-rates are similar for integrins on cell surfaces and as ectodomain fragments. Although the extended-open conformation's on-rate is ~20-fold slower, its off-rate is ~25,000-fold slower, resulting in a large affinity increase. The tighter ligand-binding pocket in the open state may slow its on-rate. Low affinity integrin states not only bind ligand more rapidly, but are also more populous on the cell surface than high affinity states. Thus, our results suggest that integrin binding to ligand may precede, rather than follow, activation by 'inside-out signaling'.


2021 ◽  
Author(s):  
Yadi Cheng ◽  
Xubiao Peng

The COVID-19 epidemic, caused by virus SARS-CoV-2, has been a pandemic and threatening everyone's health in the past two years. In SARS-CoV-2, the accessory protein ORF8 plays an important role in immune modulation. Here we present an in silico study on the effects of the disulfide bonds in ORF8, including the effects on the structures, the binding sites and free energy when ORF8 binds to the human leukocyte antigen (HLA-A). Using the explicit solvent Molecular Dynamics (MD) simulations, we collect the conformational ensembles on ORF8 with different disulfide bonds reduction schemes. With a new visualization technique on the local geometry, we analyze the effects of the disulfide bonds on the structure of ORF8. We find that the disulfide bonds have large influences on the loop regions of the surface. Moreover, by performing docking between HLA-A and the conformational ensembles of ORF8, we predict the preferred binding sites and find that most of them are little affected by the disulfide bonds. Further, we estimate the binding free energy between HLA-A and ORF8 with different disulfide bonds reductions. In the end, from the comparison with the available experimental results on the epitopes of ORF8, we validated our binding sites prediction. All the above observations may provide inspirations on inhibitor/drug design against ORF8 based on the binding pathway with HLA-A.


2021 ◽  
Vol 8 ◽  
Author(s):  
Adrien Guzzo ◽  
Patrice Delarue ◽  
Ana Rojas ◽  
Adrien Nicolaï ◽  
Gia G. Maisuradze ◽  
...  

α-Synuclein is an intrinsically disordered protein occurring in different conformations and prone to aggregate in β-sheet structures, which are the hallmark of the Parkinson disease. Missense mutations are associated with familial forms of this neuropathy. How these single amino-acid substitutions modify the conformations of wild-type α-synuclein is unclear. Here, using coarse-grained molecular dynamics simulations, we sampled the conformational space of the wild type and mutants (A30P, A53P, and E46K) of α-synuclein monomers for an effective time scale of 29.7 ms. To characterize the structures, we developed an algorithm, CUTABI (CUrvature and Torsion based of Alpha-helix and Beta-sheet Identification), to identify residues in the α-helix and β-sheet from Cα-coordinates. CUTABI was built from the results of the analysis of 14,652 selected protein structures using the Dictionary of Secondary Structure of Proteins (DSSP) algorithm. DSSP results are reproduced with 93% of success for 10 times lower computational cost. A two-dimensional probability density map of α-synuclein as a function of the number of residues in the α-helix and β-sheet is computed for wild-type and mutated proteins from molecular dynamics trajectories. The density of conformational states reveals a two-phase characteristic with a homogeneous phase (state B, β-sheets) and a heterogeneous phase (state HB, mixture of α-helices and β-sheets). The B state represents 40% of the conformations for the wild-type, A30P, and E46K and only 25% for A53T. The density of conformational states of the B state for A53T and A30P mutants differs from the wild-type one. In addition, the mutant A53T has a larger propensity to form helices than the others. These findings indicate that the equilibrium between the different conformations of the α-synuclein monomer is modified by the missense mutations in a subtle way. The α-helix and β-sheet contents are promising order parameters for intrinsically disordered proteins, whereas other structural properties such as average gyration radius, Rg, or probability distribution of Rg cannot discriminate significantly the conformational ensembles of the wild type and mutants. When separated in states B and HB, the distributions of Rg are more significantly different, indicating that global structural parameters alone are insufficient to characterize the conformational ensembles of the α-synuclein monomer.


Sign in / Sign up

Export Citation Format

Share Document