scholarly journals ‘Materials as a Design Tool’ Design Philosophy Applied in Three Innovative Research Pavilions Out of Sustainable Building Materials with Controlled End-Of-Life Scenarios

Buildings ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 64 ◽  
Author(s):  
Hanaa Dahy

Choosing building materials is usually the stage that follows design in the architectural design process, and is rarely used as a main input and driver for the design of the whole building’s geometries or structures. As an approach to have control over the environmental impact of the applied building materials and their after-use scenarios, an approach has been initiated by the author through a series of research studies, architectural built prototypes, and green material developments. This paper illustrates how sustainable building materials can be a main input in the design process, and how digital fabrication technologies can enable variable controlling strategies over the green materials’ properties, enabling adjustable innovative building spaces with new architectural typologies, aesthetic values, and controlled martial life cycles. Through this, a new type of design philosophy by means of applying sustainable building materials with closed life cycles is created. In this paper, three case studies of research pavilions are illustrated. The pavilions were prefabricated and constructed from newly developed sustainable building materials. The applied materials varied between structural and non-structural building materials, where each had a controlled end-of-life scenario. The application of the bio-based building materials was set as an initial design phase, and the architects here participated within two disciplines: once as designers, and additionally as green building material developers. In all three case studies, Design for Deconstruction (DfD) strategies were applied in different manners, encouraging architects to further follow such suggested approaches.

2020 ◽  
Vol 10 (11) ◽  
pp. 4032
Author(s):  
Anna-Marie Lauermannová ◽  
Michal Lojka ◽  
Filip Antončík ◽  
David Sedmidubský ◽  
Milena Pavlíková ◽  
...  

The search for environmentally sustainable building materials is currently experiencing significant expansion. It is increasingly important to find new materials or reintroduce those that have been set aside to find a good replacement for Portland cement, which is widely used despite being environmentally insufficient and energy-intensive. Magnesium oxybromides, analogues to well-known magnesium oxychloride cements, fit both categories of new and reintroduced materials. In this contribution, two magnesium oxybromide phases were prepared and thoroughly analyzed. The stoichiometries of the prepared phases were 5Mg(OH)2∙MgBr2∙8H2O and 3Mg(OH)2∙MgBr2∙8H2O. The phase analysis was determined using X-ray diffraction. The morphology was analyzed with scanning and transmission electron microscopy. The chemical composition was studied using X-ray fluorescence and energy dispersive spectroscopy. Fourier transform infrared spectroscopy was also used. The thermal stability and the mechanism of the release of gasses linked to the heating process, such as water and hydrobromic acid evaporation, were analyzed using simultaneous thermal analysis combined with mass spectroscopy. The obtained results were compared with the data available for magnesium oxychlorides.


2018 ◽  
Author(s):  
Neeti Garg ◽  
Ashwani Kumar ◽  
Satish Pipralia ◽  
Parveen Kumar

2019 ◽  
Vol 13 (1) ◽  
pp. 194-203 ◽  
Author(s):  
Mathilde Landgren ◽  
Signe Skovmand Jakobsen ◽  
Birthe Wohlenberg ◽  
Lotte Bjerregaard Jensen

Purpose In recent decades there has been a focus on reducing the overall emissions from the built environment, which increases the complexity of the building design process. More specialized knowledge, a greater common understanding and more cooperation between the stakeholders are required. Interdisciplinary design teams need simple and intuitive means of communication. Architects and engineers are starting to increase their focus on improving interdisciplinary communication, but it is often unclear how to do so. The purpose of this paper is to define the impact of visually communicating engineering knowledge to architects in an interdisciplinary design team and to define how quantifying architectural design decisions have an impact during the early phases of sustainable building design. Design/methodology/approach This work is based on a study of extensive project materials consisting of presentations, reports, simulation results and case studies. The material is made available by one of the largest European Engineering Consultancies and by a large architectural office in the field of sustainable architecture in Denmark. The project material is used for mapping communication concepts from practice. Findings It is demonstrated that visual communication by engineers increases the level of technical knowledge in the design decisions made by architects. This is essential in order to reach the goal of designing buildings with low environmental impact. Conversely, quantification of architectural quality improved the engineer’s acceptance of the architects’ proposals. Originality/value This paper produces new knowledge through the case study processes performed. The main points are presented as clearly as possible; however, it should be stressed that it is only the top of the iceberg. In all, 17 extensive case studies design processes were performed with various design teams by the 3 authors of the paper Mathilde, Birthe and Signe. The companies that provided the framework for the cases are leading in Europe within sustainability in the built environment, and in the case of Sweco also in regards to size (number of employees). Data are thus first hand and developed by the researchers and authors of this paper, with explicit consent from the industry partners involved as well as assoc. Professor Lotte B. Jensen Technical University of Denmark (DTU). This material is in the DTU servers and is in the PhD dissertation by Mathilde Landgren (successful defence was in January 2019). The observations and reflection is presented in selected significant case examples. The methods are descriped in detail, and if further information on method is required a more in depth description is found in Mathilde Landgrens PhD Dissertation. There is a lack in existing literature of the effect of visualisation in interdisciplinary design teams and though the literature (e.g. guidelines) of integrated design is extensive, there is not much published on this essential part of an integrated design process.


2011 ◽  
Vol 374-377 ◽  
pp. 1254-1257
Author(s):  
Nima Amani ◽  
Seyedmohsen Hosseini

There is need to assess the potential of the construction materials for the green building future generation. Research is necessary for complete assessment of construction materials for present and future generation of green building. This paper provides a consistent basis and specific factors for construction materials based on eco-labeling sciences. Within the methodological framework, three categories of sustainable building materials’ implementation are discussed: economical implementation; environment implementation; and social implementation. The paper shows that green building improvements can be achieved with help of the choice materials based on existing factors of eco-labeling construction. Construction eco-labeling can help to select a suitable material for creating a better outdoor environment and indoor environment of building.


Sign in / Sign up

Export Citation Format

Share Document