scholarly journals The Charcot–Marie Tooth Disease Mutation R94Q in MFN2 Decreases ATP Production but Increases Mitochondrial Respiration under Conditions of Mild Oxidative Stress

Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1289 ◽  
Author(s):  
Christina Wolf ◽  
Rahel Zimmermann ◽  
Osamah Thaher ◽  
Diones Bueno ◽  
Verena Wüllner ◽  
...  

Charcot–Marie tooth disease is a hereditary polyneuropathy caused by mutations in Mitofusin-2 (MFN2), a GTPase in the outer mitochondrial membrane involved in the regulation of mitochondrial fusion and bioenergetics. Autosomal-dominant inheritance of a R94Q mutation in MFN2 causes the axonal subtype 2A2A which is characterized by early onset and progressive atrophy of distal muscles caused by motoneuronal degeneration. Here, we studied mitochondrial shape, respiration, cytosolic, and mitochondrial ATP content as well as mitochondrial quality control in MFN2-deficient fibroblasts stably expressing wildtype or R94Q MFN2. Under normal culture conditions, R94Q cells had slightly more fragmented mitochondria but a similar mitochondrial oxygen consumption, membrane potential, and ATP production as wildtype cells. However, when inducing mild oxidative stress 24 h before analysis using 100 µM hydrogen peroxide, R94Q cells exhibited significantly increased respiration but decreased mitochondrial ATP production. This was accompanied by increased glucose uptake and an up-regulation of hexokinase 1 and pyruvate kinase M2, suggesting increased pyruvate shuttling into mitochondria. Interestingly, these changes coincided with decreased levels of PINK1/Parkin-mediated mitophagy in R94Q cells. We conclude that mitochondria harboring the disease-causing R94Q mutation in MFN2 are more susceptible to oxidative stress, which causes uncoupling of respiration and ATP production possibly by a less efficient mitochondrial quality control.

Author(s):  
Christina Wolf ◽  
Rahel Zimmermann ◽  
Osamah Thaher ◽  
Diones Bueno ◽  
Verena Wüllner ◽  
...  

Charcot-Marie-Tooth disease is a hereditary polyneuropathy caused by mutations in Mitofusin-2 (MFN2), a GTPase in the outer mitochondrial membrane involved in the regulation of mitochondrial fusion and bioenergetics. Autosomal-dominant inheritance of a R94Q mutation in MFN2 causes the axonal subtype 2A2A which is characterized by early onset and progressive atrophy of distal muscles caused by motoneuronal degeneration. Here, we studied mitochondrial shape, respiration, cytosolic and mitochondrial ATP content as well as mitochondrial quality control in MFN2-deficient fibroblasts stably expressing wildtype or R94Q MFN2. Under normal culture conditions, R94Q cells had slightly more fragmented mitochondria but similar mitochondrial oxygen consumption, membrane potential and ATP production. Mild oxidative stress procured by 100 µM hydrogen peroxide applied 24 h before analysis, however, significantly increased respiration but decreased mitochondrial ATP production only in R94Q cells. This was accompanied by increased glucose uptake and an upregulation of hexokinase 1 and pyruvate kinase M2 suggesting increased pyruvate shuttling into mitochondria. As these changes coincided with decreased levels of PINK1/Parkin-mediated mitophagy in R94Q cells, we conclude that the disease-causing R94Q mutation in MFN2 causes uncoupling of mitochondrial respiration from ATP production by a less efficient mitochondrial quality control.


Author(s):  
Christina Wolf ◽  
Rahel Zimmermann ◽  
Osamah Thaher ◽  
Diones Bueno ◽  
Verena Wüllner ◽  
...  

Charcot-Marie-Tooth disease is a hereditary polyneuropathy caused by mutations in Mitofusin-2 (MFN2), a GTPase in the outer mitochondrial membrane involved in the regulation of mitochondrial fusion and bioenergetics. Autosomal-dominant inheritance of a R94Q mutation in MFN2 causes the axonal subtype 2A2A which is characterized by early onset and progressive atrophy of distal muscles caused by motoneuronal degeneration. Here, we studied mitochondrial shape, respiration, cytosolic and mitochondrial ATP content as well as mitochondrial quality control in MFN2-deficient fibroblasts stably expressing wildtype or R94Q MFN2. Under normal culture conditions, R94Q cells had slightly more fragmented mitochondria but a similar mitochondrial oxygen consumption, membrane potential and ATP production as wildtype cells. However, when inducing mild oxidative stress 24 h before analysis using 100 µM hydrogen peroxide, R94Q cells exhibited significantly increased respiration but decreased mitochondrial ATP production. This was accompanied by increased glucose uptake and an upregulation of hexokinase 1 and pyruvate kinase M2 suggesting increased pyruvate shuttling into mitochondria. As these changes coincided with decreased levels of PINK1/Parkin-mediated mitophagy in R94Q cells, we conclude that the disease-causing R94Q mutation in MFN2 causes uncoupling of mitochondrial respiration from ATP production by a less efficient mitochondrial quality control triggered by oxidative stress.


2019 ◽  
Vol 58 (14) ◽  
pp. 2091-2093
Author(s):  
Kazuki Kanemaru ◽  
Go Ogawa ◽  
Hitoshi Mochizuki ◽  
Masamitsu Nakazato ◽  
Kazutake Shiomi

2020 ◽  
Vol 323 ◽  
pp. 113069 ◽  
Author(s):  
Julien Cassereau ◽  
Arnaud Chevrollier ◽  
Philippe Codron ◽  
Cyril Goizet ◽  
Naïg Gueguen ◽  
...  

PLoS ONE ◽  
2013 ◽  
Vol 8 (6) ◽  
pp. e67276 ◽  
Author(s):  
Anna L. Chapman ◽  
Ellen J. Bennett ◽  
Tennore M. Ramesh ◽  
Kurt J. De Vos ◽  
Andrew J. Grierson

2017 ◽  
Vol 653 ◽  
pp. 337-340 ◽  
Author(s):  
Yuta Yamashita ◽  
Keiichi Irie ◽  
Akane Kochi ◽  
Nami Kimura ◽  
Toshinobu Hayashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document