mitochondrial transport
Recently Published Documents


TOTAL DOCUMENTS

210
(FIVE YEARS 34)

H-INDEX

43
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Dengfeng Lu ◽  
Yi Wang ◽  
Guangjie Liu ◽  
Shixin Wang ◽  
Jing Wang ◽  
...  

Abstract Armcx1 is highly expressed in the brain and is located in the mitochondrial outer membrane of neurons, where it mediates mitochondrial transport. Mitochondrial transport promotes the removal of damaged mitochondria and the replenishment of healthy mitochondria, which are essential for neuronal survival after traumatic brain injury (TBI). This study investigated the role of Armcx1 and its underlying regulator(s) in secondary brain injury (SBI) after TBI. An in vivo TBI model was established in C57BL/6 mice via controlled cortical impact (CCI). Adeno-associated viruses with Armcx1 overexpression and knockdown were constructed and administered to mice by stereotactic cortical injection. Exogenous miR-223-3P mimic or inhibitor was transfected into cultured cortical neurons, which were then scratched to simulate TBI in vitro. The Armcx1 protein level was found to be decreased in peri-lesion tissue, particularly in neurons. The overexpression of Armcx1 significantly reduced TBI-induced neurological dysfunction, apoptosis, axonal injury, and mitochondrial dysfunction, while knockdown of Armcx1 had the opposite effect. Armcx1 was a direct target of miR-223-3P. The miR-223-3P mimic significantly reduced the Armcx1 protein level, while the miR-223-3P inhibitor had the opposite effect. Finally, the miR-223-3P inhibitor significantly improved mitochondrial membrane potential and increased the total length of the neurites without affecting branching numbers, while the miR-223-3P mimic had the opposite effect. In summary, our results suggest that the decreased expression of Armcx1 protein in neurons after experimental TBI aggravates secondary brain injury, which may be regulated by miR-223-3P. Therefore, this study provides a potential therapeutic approach for treating TBI.


2021 ◽  
Vol 22 (23) ◽  
pp. 12620
Author(s):  
Salvatore Passarella ◽  
Avital Schurr ◽  
Piero Portincasa

Some metabolic pathways involve two different cell components, for instance, cytosol and mitochondria, with metabolites traffic occurring from cytosol to mitochondria and vice versa, as seen in both glycolysis and gluconeogenesis. However, the knowledge on the role of mitochondrial transport within these two glucose metabolic pathways remains poorly understood, due to controversial information available in published literature. In what follows, we discuss achievements, knowledge gaps, and perspectives on the role of mitochondrial transport in glycolysis and gluconeogenesis. We firstly describe the experimental approaches for quick and easy investigation of mitochondrial transport, with respect to cell metabolic diversity. In addition, we depict the mitochondrial shuttles by which NADH formed in glycolysis is oxidized, the mitochondrial transport of phosphoenolpyruvate in the light of the occurrence of the mitochondrial pyruvate kinase, and the mitochondrial transport and metabolism of L-lactate due to the L-lactate translocators and to the mitochondrial L-lactate dehydrogenase located in the inner mitochondrial compartment.


2021 ◽  
Vol 14 ◽  
Author(s):  
Yongchao Mou ◽  
Joshua Dein ◽  
Zhenyu Chen ◽  
Mrunali Jagdale ◽  
Xue-Jun Li

Charcot-Marie-Tooth (CMT) disease is one of the most common genetically inherited neurological disorders and CMT type 2A (CMT 2A) is caused by dominant mutations in the mitofusin-2 (MFN2) gene. MFN2 is located in the outer mitochondrial membrane and is a mediator of mitochondrial fusion, with an essential role in maintaining normal neuronal functions. Although loss of MFN2 induces axonal neuropathy, the detailed mechanism by which MFN2 deficiency results in axonal degeneration of human spinal motor neurons remains largely unknown. In this study, we generated MFN2-knockdown human embryonic stem cell (hESC) lines using lentivirus expressing MFN2 short hairpin RNA (shRNA). Using these hESC lines, we found that MFN2 loss did not affect spinal motor neuron differentiation from hESCs but resulted in mitochondrial fragmentation and dysfunction as determined by live-cell imaging. Notably, MFN2-knockodwn spinal motor neurons exhibited CMT2A disease-related phenotypes, including extensive perikaryal inclusions of phosphorylated neurofilament heavy chain (pNfH), frequent axonal swellings, and increased pNfH levels in long-term cultures. Importantly, MFN2 deficit impaired anterograde and retrograde mitochondrial transport within axons, and reduced the mRNA and protein levels of kinesin and dynein, indicating the interfered motor protein expression induced by MFN2 deficiency. Our results reveal that MFN2 knockdown induced axonal degeneration of spinal motor neurons and defects in mitochondrial morphology and function. The impaired mitochondrial transport in MFN2-knockdown spinal motor neurons is mediated, at least partially, by the altered motor proteins, providing potential therapeutic targets for rescuing axonal degeneration of spinal motor neurons in CMT2A disease.


2021 ◽  
Author(s):  
John T. Canty ◽  
Andrew Hensley ◽  
Ahmet Yildiz

In neurons, mitochondria are transported to distal regions for supplying energy and buffer calcium. Mitochondrial transport is mediated by Miro and TRAK adaptors that recruit kinesin and dynein-dynactin. To understand how mitochondria are transported by these opposing motors and stalled at regions with elevated calcium levels, we reconstituted the mitochondrial transport machinery in vitro. We show that the coiled-coil domain of TRAK activates dynein-dynactin motility, but kinesin requires an additional factor to efficiently transport Miro/TRAK. Unexpectedly, TRAK adaptors that recruit both motors move towards the plus-end, whereas kinesin is excluded from binding TRAK transported by dynein-dynactin. The assembly and motility of the transport machinery are not affected by calcium. Instead, the mitochondrial docking protein syntaphilin is sufficient to oppose the forces generated by kinesin and stall the motility. Our results provide mechanistic insight into how mitochondria are transported by the coordinated action of motors and statically anchored to regions with high neuronal activity.


Author(s):  
Rakesh Kumar Sharma ◽  
Abderrahman Chafik ◽  
Giulia Bertolin

Mitochondria are essential to cell homeostasis, and alterations in mitochondrial distribution, segregation or turnover have been linked to complex pathologies such as neurodegenerative diseases or cancer. Understanding how these functions are coordinated in specific cell types is a major challenge to discover how mitochondria globally shape cell functionality. In this review, we will first describe how mitochondrial transport and dynamics are regulated throughout the cell cycle in yeast and in mammals. Second, we will explore the functional consequences of mitochondrial transport and partitioning on cell proliferation, fate acquisition, stemness, and on the way cells adapt their metabolism. Last, we will focus on how mitochondrial clearance programs represent a further layer of complexity for cell differentiation, or in the maintenance of stemness. Defining how mitochondrial transport, dynamics and clearance are mutually orchestrated in specific cell types may help our understanding of how cells can transition from a physiological to a pathological state.


2021 ◽  
Vol 13 ◽  
Author(s):  
Biyao Wang ◽  
Minghao Huang ◽  
Dehao Shang ◽  
Xu Yan ◽  
Baohong Zhao ◽  
...  

Mitochondria are organelles responsible for bioenergetic metabolism, calcium homeostasis, and signal transmission essential for neurons due to their high energy consumption. Accumulating evidence has demonstrated that mitochondria play a key role in axon degeneration and regeneration under physiological and pathological conditions. Mitochondrial dysfunction occurs at an early stage of axon degeneration and involves oxidative stress, energy deficiency, imbalance of mitochondrial dynamics, defects in mitochondrial transport, and mitophagy dysregulation. The restoration of these defective mitochondria by enhancing mitochondrial transport, clearance of reactive oxidative species (ROS), and improving bioenergetic can greatly contribute to axon regeneration. In this paper, we focus on the biological behavior of axonal mitochondria in aging, injury (e.g., traumatic brain and spinal cord injury), and neurodegenerative diseases (Alzheimer's disease, AD; Parkinson's disease, PD; Amyotrophic lateral sclerosis, ALS) and consider the role of mitochondria in axon regeneration. We also compare the behavior of mitochondria in different diseases and outline novel therapeutic strategies for addressing abnormal mitochondrial biological behavior to promote axonal regeneration in neurological diseases and injuries.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. e1009360
Author(s):  
Ying-Chun Chen ◽  
Hao-Ru Huang ◽  
Chia-Hao Hsu ◽  
Chan-Yen Ou

Neurons are highly specialized cells with polarized cellular processes and subcellular domains. As vital organelles for neuronal functions, mitochondria are distributed by microtubule-based transport systems. Although the essential components of mitochondrial transport including motors and cargo adaptors are identified, it is less clear how mitochondrial distribution among somato-dendritic and axonal compartment is regulated. Here, we systematically study mitochondrial motors, including four kinesins, KIF5, KIF17, KIF1, KLP-6, and dynein, and transport regulators in C. elegans PVD neurons. Among all these motors, we found that mitochondrial export from soma to neurites is mainly mediated by KIF5/UNC-116. Interestingly, UNC-116 is especially important for axonal mitochondria, while dynein removes mitochondria from all plus-end dendrites and the axon. We surprisingly found one mitochondrial transport regulator for minus-end dendritic compartment, TRAK-1, and two mitochondrial transport regulators for axonal compartment, CRMP/UNC-33 and JIP3/UNC-16. While JIP3/UNC-16 suppresses axonal mitochondria, CRMP/UNC-33 is critical for axonal mitochondria; nearly no axonal mitochondria present in unc-33 mutants. We showed that UNC-33 is essential for organizing the population of UNC-116-associated microtubule bundles, which are tracks for mitochondrial trafficking. Disarrangement of these tracks impedes mitochondrial transport to the axon. In summary, we identified a compartment-specific transport regulation of mitochondria by UNC-33 through organizing microtubule tracks for different kinesin motors other than microtubule polarity.


2021 ◽  
Author(s):  
Hongfeng Zhang ◽  
Yujuan Hong ◽  
Weijie Yang ◽  
Ruimin Wang ◽  
Ting Yao ◽  
...  

Abstract Loss-of-function mutations in SNX14 cause autosomal recessive spinocerebellar ataxia 20, which is a form of early-onset cerebellar ataxia that lacks molecular mechanisms and mouse models. We generated Snx14-deficient mouse models and observed severe motor deficits and cell-autonomous Purkinje cell degeneration. SNX14 deficiency disrupted microtubule organization and mitochondrial transport in axons by destabilizing the microtubule-severing enzyme spastin, which is implicated in dominant hereditary spastic paraplegia with cerebellar ataxia, and compromised axonal integrity and mitochondrial function. Axonal transport disruption and mitochondrial dysfunction further led to degeneration of high-energy-demanding Purkinje cells, which resulted in the pathogenesis of cerebellar ataxia. The antiepileptic drug valproate ameliorated motor deficits and cerebellar degeneration in Snx14-deficient mice via the restoration of mitochondrial transport and function in Purkinje cells. Our study revealed an unprecedented role for SNX14-dependent axonal transport in cerebellar ataxia, demonstrated the convergence of SNX14 and spastin in mitochondrial dysfunction, and suggests valproate as a potential therapeutic agent.


Sign in / Sign up

Export Citation Format

Share Document