scholarly journals Climate Change Mitigation Potential of Wind Energy

Climate ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 136
Author(s):  
Rebecca J. Barthelmie ◽  
Sara C. Pryor

Global wind resources greatly exceed current electricity demand and the levelized cost of energy from wind turbines has shown precipitous declines. Accordingly, the installed capacity of wind turbines grew at an annualized rate of about 14% during the last two decades and wind turbines now provide ~6–7% of the global electricity supply. This renewable electricity generation source is thus already playing a role in reducing greenhouse gas emissions from the energy sector. Here we document trends within the industry, examine projections of future installed capacity increases and compute the associated climate change mitigation potential at the global and regional levels. Key countries (the USA, UK and China) and regions (e.g., EU27) have developed ambitious plans to expand wind energy penetration as core aspects of their net-zero emissions strategies. The projected climate change mitigation from wind energy by 2100 ranges from 0.3–0.8 °C depending on the precise socio-economic pathway and wind energy expansion scenario followed. The rapid expansion of annual increments to wind energy installed capacity by approximately two times current rates can greatly delay the passing of the 2 °C warming threshold relative to pre-industrial levels. To achieve the required expansion of this cost-effective, low-carbon energy source, there is a need for electrification of the energy system and for expansion of manufacturing and installation capacity.

2021 ◽  
Vol 23 (3) ◽  
pp. 73-79
Author(s):  
Jasmina Mandić Lukić ◽  
◽  
Đorđina Milovanović ◽  
Maja Stipić ◽  
Sanja Petrović Bećirović ◽  
...  

Faced with forthcoming international obligations related to climate change mitigation measures, primarily planned to be reflected through the Law and Action Plan on Low Carbon Development Strategy, as well as the Law on Climate Change, all of which are currently being defined and adopted, Serbia is increasingly facing a need to switch its coal-fired facilities to alternative, environmentally more acceptable options. The related measures will have to be implemented much sooner than initially planned. Knowing that 80% of national GHG emissions originate from the energy sector, as well as that the dominant portion of those emissions results from the use of locally available coal, it is clear that the most efficient climate change mitigation measure would be a switch to alternative fuel options. However, having in mind that such an energy transition process is coupled with significant technological, environmental, economic, social, and other difficulties, the EU has initiated several projects, and one of them is TRACER, launched under the Horizon 2020 program, that strives to shed light on the best research and innovation strategies facilitating easier transition to the sustainable, low carbon energy system. The project addresses actions across nine coal-intensive European regions, including Kolubara Region in Serbia. The paper presents technological, environmental, and social challenges in the transition process, with an emphasis on the Kolubara region, and a proposal for the energy transition in Serbia respecting R&I strategies and Smart Specialization.


2017 ◽  
Vol 10 (2) ◽  
pp. 16-36 ◽  
Author(s):  
Alexander Dunlap

The Isthmus of Tehuantepec region of southwest Oaxaca, Mexico, known locally as the Istmo, was identified in 2003 as a prime site for wind energy development. Supported by climate change mitigation legislation, a ‘wind rush’ engulfed the Istmo. Now, La Ventosa sits surrounded by high-tension wires and wind turbines, some only 280 meters from homes. This paper argues that new valuations of wind resources based on market mechanisms and anthropogenic climate change laws are intensifying the destructive trajectory of the industrial economy. There are benefits for land owners and political authorities, and what amounts to token civil works projects for the town. But the majority of people interviewed expressed dissatisfaction towards the existence of wind parks surrounding the town. Instead of collective benefits, the wind parks brought different degrees of health concerns, enormous increases in land, rent, food, and electricity prices, as well as insecurity. The findings here demonstrate that wind energy development, encouraged by climate change mitigation policies, is intensifying pre-existing trends towards inequality and poverty in La Ventosa. Meanwhile, the destructive operations of the global industrial economy are renewed, using market-based approaches to mitigating anthropogenic climate change.


2007 ◽  
Vol 12 (3) ◽  
pp. 359-378 ◽  
Author(s):  
DENNIS ANDERSON ◽  
SARAH WINNE

Through a dynamic model of energy system change the paper examines the role of innovation in bringing about a low carbon energy system. The processes of innovation and technological substitution are cumulative, dynamic, and highly non-linear processes such that how the energy system evolves in the long term is extraordinarily sensitive to the strength and duration of the initial policies. It is possible, under some policy assumptions, that energy systems would continue to depend on fossil fuels for so long as fossil fuels remain abundant and the least cost resource; and under other assumptions, after allowing for the unavoidable lags associated with investment and the building up of a new capital stock, that fossil fuels would become almost wholly displaced by the non-carbon alternatives. The implication is that the external benefits of innovation, which include the creation of options and the reduction of costs arising directly from innovation itself, and the reduction of environmental damage, are far greater, perhaps by orders of magnitude, than the traditional cost–benefit models used for the analysis of climate change mitigation. The analysis suggests why a focus on discovery and innovation offers a promising way forward for national and international policies on climate change.


2017 ◽  
Vol 10 (12) ◽  
pp. 2491-2499 ◽  
Author(s):  
J. Carlos Abanades ◽  
Edward S. Rubin ◽  
Marco Mazzotti ◽  
Howard J. Herzog

Proposed utilization schemes producing liquid fuels from captured CO2 offer fewer climate mitigation benefits at higher costs than alternative systems.


Futures ◽  
2017 ◽  
Vol 93 ◽  
pp. 14-26 ◽  
Author(s):  
Alejandra Elizondo ◽  
Vanessa Pérez-Cirera ◽  
Alexandre Strapasson ◽  
José Carlos Fernández ◽  
Diego Cruz-Cano

2020 ◽  
Vol 5 (1) ◽  
pp. 47-58
Author(s):  
Didem Gunes Yilmaz ◽  

Paris Agreement of December 2015 was the last official initiative led by the United Nations (UN) as the driver of climate change mitigation. Climate change was hence linked with an increase in the occurrence of natural hazards. A variety of initiatives were consequently adopted under different themes such as sustainable cities, climate-friendly development and low-carbon cities. However, most of the initiatives targeted by global cities with urban areas being the focus in terms of taking action against global warming issues. This is due to the structural and environmental features of cities characterized by being populated, as such, they not only generate a large number of carbon emissions but also happens to be the biggest consumer of natural resources. In turn, they create a microclimate, which contributes to climate change. Masdar City, for example, was designed as the first fully sustainable urban area, which replaced fuel-based energy with the electric-based energy. China, as another example, introduced the Sponge Cities action, a method of urban water management to mitigate against flooding. Consequently, architects and urban planners are urged to conform to the proposals that would mitigate global warming. This paper, as a result, examines some of the models that have been internationally adopted and thereafter provide the recommendations that can be implemented in large urban areas in Turkey, primarily in Istanbul.


2018 ◽  
Vol 47 (2) ◽  
pp. 141-149 ◽  
Author(s):  
Sergio Colombo ◽  
Beatriz Rocamora-Montiel

The climate change mitigation potential of olive farming has been widely acknowledged. It has particular relevance in regions such as Andalusia (southern Spain) where olive growing is a key land use activity with significant social, economic and environmental implications. This potential of olive farming, however, is not adequately embodied in current Agri-Environmental Climate Schemes (AECS), which often fail to deliver the expected outcomes. The present article proposes an alternative strategy based on a result-oriented approach to AECS for enhancing soil carbon sequestration in Andalusian olive growing. After reviewing the current legal and institutional situation which forbids the wide application of result-oriented agri-environmental schemes, we suggest the use of alternative territorial governance arrangements, such as hybrid governance structures (HGS), as a framework to support the implementation of a result-oriented approach in the specific case of olive growing. Results indicate that the application of HGS can provide valuable benefits in terms of soil carbon storage. The information provided may be useful in the proposed new legislative framework, at both European and regional level, to promote more sustainable farming systems.


Sign in / Sign up

Export Citation Format

Share Document