scholarly journals Spatiotemporal Dynamics of a Generalized Viral Infection Model with Distributed Delays and CTL Immune Response

Computation ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 21 ◽  
Author(s):  
Khalid Hattaf

In this paper, we propose and investigate a diffusive viral infection model with distributed delays and cytotoxic T lymphocyte (CTL) immune response. Also, both routes of infection that are virus-to-cell infection and cell-to-cell transmission are modeled by two general nonlinear incidence functions. The well-posedness of the proposed model is also proved by establishing the global existence, uniqueness, nonnegativity and boundedness of solutions. Moreover, the threshold parameters and the global asymptotic stability of equilibria are obtained. Furthermore, diffusive and delayed virus dynamics models presented in many previous studies are improved and generalized.

2016 ◽  
Vol 2016 ◽  
pp. 1-21 ◽  
Author(s):  
Hui Miao ◽  
Zhidong Teng ◽  
Zhiming Li

The dynamical behaviors for a five-dimensional viral infection model with three delays which describes the interactions of antibody, cytotoxic T-lymphocyte (CTL) immune responses, and nonlinear incidence rate are investigated. The threshold values for viral infection, antibody response, CTL immune response, CTL immune competition, and antibody competition, respectively, are established. Under certain assumptions, the threshold value conditions on the global stability of the infection-free, immune-free, antibody response, CTL immune response, and interior equilibria are proved by using the Lyapunov functionals method, respectively. Immune delay as a bifurcation parameter is further investigated. The numerical simulations are performed in order to illustrate the dynamical behavior of the model.


2019 ◽  
Vol 29 (12) ◽  
pp. 1950161 ◽  
Author(s):  
Jinhu Xu ◽  
Yan Geng ◽  
Suxia Zhang

We have developed a class of viral infection model with cell-to-cell transmission and humoral immune response. The model addresses both immune and intracellular delays. We also constructed Lyapunov functionals to establish the global dynamical properties of the equilibria. Theoretical results indicate that considering only two intracellular delays did not affect the dynamical behavior of the model, but incorporating an immune delay greatly affects the dynamics, i.e. an immune delay may destabilize the immunity-activated equilibrium and lead to Hopf bifurcation, oscillations and stability switches. Our results imply that an immune delay dominates the intracellular delays in the model. We also investigated the direction of the Hopf bifurcation and the stability of the periodic solutions by applying normal form and center manifold theory, and investigated the existence of global Hopf bifurcation by regarding the immune delay as a bifurcation parameter. Numerical simulations are carried out to support the analytical conclusions.


2017 ◽  
Vol 12 (5) ◽  
pp. 15-32 ◽  
Author(s):  
M. Mahrouf ◽  
K. Hattaf ◽  
N. Yousfi

2016 ◽  
Vol 21 (2) ◽  
pp. 143-158
Author(s):  
Jia Liu ◽  
Qunying Zhang ◽  
Canrong Tian

This paper is concerned with the dynamics of a viral infection model with diffusion under the assumption that the immune response is retarded. A time delay is incorporated into the model described the delayed immune response after viral infection. Based upon a stability analysis, we demonstrate that the appearance, or the absence, of spatial patterns is determined by the delay under some conditions. Moreover, the spatial patterns occurs as a consequence of Hopf bifurcation. By applying the normal form and the center manifold theory, the direction as well as the stability of the Hopf bifurcation is explored. In addition, a series of numerical simulations are performed to illustrate our theoretical results.


Sign in / Sign up

Export Citation Format

Share Document