scholarly journals Generalized Concatenated Codes over Gaussian and Eisenstein Integers for Code-Based Cryptography

Cryptography ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 33
Author(s):  
Johann-Philipp Thiers ◽  
Jürgen Freudenberger

The code-based McEliece and Niederreiter cryptosystems are promising candidates for post-quantum public-key encryption. Recently, q-ary concatenated codes over Gaussian integers were proposed for the McEliece cryptosystem, together with the one-Mannheim error channel, where the error values are limited to the Mannheim weight one. Due to the limited error values, the codes over Gaussian integers achieve a higher error correction capability than maximum distance separable (MDS) codes with bounded minimum distance decoding. This higher error correction capability improves the work factor regarding decoding attacks based on information-set decoding. The codes also enable a low complexity decoding algorithm for decoding beyond the guaranteed error correction capability. In this work, we extend this coding scheme to codes over Eisenstein integers. These codes have advantages for the Niederreiter system. Additionally, we propose an improved code construction based on generalized concatenated codes. These codes extend to the rate region, where the work factor is beneficial compared to MDS codes. Moreover, generalized concatenated codes are more robust against structural attacks than ordinary concatenated codes.

Cryptography ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 11
Author(s):  
Jürgen Freudenberger ◽  
Johann-Philipp Thiers

The McEliece cryptosystem is a promising candidate for post-quantum public-key encryption. In this work, we propose q-ary codes over Gaussian integers for the McEliece system and a new channel model. With this one Mannheim error channel, errors are limited to weight one. We investigate the channel capacity of this channel and discuss its relation to the McEliece system. The proposed codes are based on a simple product code construction and have a low complexity decoding algorithm. For the one Mannheim error channel, these codes achieve a higher error correction capability than maximum distance separable codes with bounded minimum distance decoding. This improves the work factor regarding decoding attacks based on information-set decoding.


2013 ◽  
Vol 27 (12) ◽  
pp. 4014-4027 ◽  
Author(s):  
Hsin-Ying Liang ◽  
Hung-Chi Chu ◽  
Chuan-Bi Lin ◽  
Kuang-Hao Lin

Author(s):  
Martin Tomlinson ◽  
Cen Jung Tjhai ◽  
Marcel A. Ambroze ◽  
Mohammed Ahmed ◽  
Mubarak Jibril

Sign in / Sign up

Export Citation Format

Share Document