scholarly journals Synthesis, X-ray Crystal Structure, Hirshfeld Surface Analysis, and Molecular Docking Study of Novel Hepatitis B (HBV) Inhibitor: 8-Fluoro-5-(4-fluorobenzyl)-3-(2-methoxybenzyl)-3,5-dihydro-4H-pyrimido[5,4-b]indol-4-one

Crystals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 379 ◽  
Author(s):  
Ivashchenko ◽  
Mitkin ◽  
Kravchenko ◽  
Kuznetsova ◽  
Kovalenko ◽  
...  

A method for the synthesis of 8-fluoro-5-(4-fluorobenzyl)-3-(2-methoxybenzyl)-3,5-dihydro-4H-pyrimido[5,4-b]indol-4-one has been developed and the electronic and spatial structure of a new biologically active molecule has been studied both theoretically and experimentally. The title compound was crystallized from acetonitrile and the single-crystal X-ray analysis has revealed that it exists in a monoclinic P21/n space group, with one molecule in the asymmetric part of the unit cell, a = 16.366(3) Å, b = 6.0295(14) Å, c = 21.358(4) Å, β = 105.21(2)°, V = 2033.7(7) Å3 and Z = 4. Hirshfeld surface analysis was used to study intermolecular interactions in the crystal. Molecular docking studies have evaluated the investigated compound as a new inhibitor of hepatitis B. Testing for anti-hepatitis B virus activity has shown that this substance has in vitro nanomolar inhibitory activity against Hepatitis B virus (HBV).

2019 ◽  
Vol 27 (3) ◽  
pp. 389-400 ◽  
Author(s):  
Mohammad K. Parvez ◽  
Md. Tabish Rehman ◽  
Perwez Alam ◽  
Mohammed S. Al-Dosari ◽  
Saleh I. Alqasoumi ◽  
...  

Author(s):  
Alexandre V. Ivachtchenko ◽  
Sergiy M. Kovalenko ◽  
Dmitry V. Kravchenko ◽  
Oleg D. Mitkin ◽  
Vladimir V. Ivanov ◽  
...  

The title compound, C15H22N4O5S, was prepared via alkylation of 3-(chloromethyl)-5-(pentan-3-yl)-1,2,4-oxadiazole in anhydrous dioxane in the presence of triethylamine. The thiadiazine ring has an envelope conformation with the S atom displaced by 0.4883 (6) Å from the mean plane through the other five atoms. The planar 1,2,4-oxadiazole ring is inclined to the mean plane of the thiadiazine ring by 77.45 (11)°. In the crystal, molecules are linked by C—H...N hydrogen bonds, forming chains propagating along the b-axis direction. Hirshfeld surface analysis and two-dimensional fingerprint plots have been used to analyse the intermolecular contacts present in the crystal. Molecular docking studies were use to evaluate the title compound as a potential system that interacts effectively with the capsid of the Hepatitis B virus (HBV), supported by an experimental in vitro HBV replication model.


Author(s):  
Younos Bouzian ◽  
Cemile Baydere ◽  
Necmi Dege ◽  
Noureddine Hamou Ahabchane ◽  
Joel T. Mague ◽  
...  

In the molecular structure of the title compound, C20H21N3O7, the quinoline ring system is slightly bent, with a dihedral angle between the phenyl and the pyridine rings of 3.47 (7)°. In the crystal, corrugated layers of molecules extending along the ab plane are generated by C—H...O hydrogen bonds. The intermolecular interactions were quantified by Hirshfeld surface analysis and two-dimensional fingerprint plots. The most significant contributions to the crystal packing are from H...H (42.3%), H...O/O...H (34.5%) and H...C/ C...H (17.6%) contacts. Molecular orbital calculations providing electron-density plots of the HOMO and LUMO as well as molecular electrostatic potentials (MEP) were computed, both with the DFT/B3LYP/6–311 G++(d,p) basis set. A molecular docking study between the title molecule and the COVID-19 main protease (PDB ID: 6LU7) was performed, showing that it is a good agent because of its affinity and ability to adhere to the active sites of the protein.


Sign in / Sign up

Export Citation Format

Share Document