scholarly journals Red Grouper (Epinephelus morio) Shape Faunal Communities via Multiple Ecological Pathways

Diversity ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 89 ◽  
Author(s):  
Robert D. Ellis

Organisms that modify the availability of abiotic resources for other species can alter the structure and function of ecological communities through multiple pathways. In Florida Bay, red grouper (Epinephelus morio) engineer habitats by excavating sediment and detritus from karst solution holes and are also predators that consume a variety of benthic crustaceans and fish, some of which colonize engineered habitats. The effect of red grouper on these communities is complex as colonizing species interact with red grouper in different ways, including both direct (e.g., predator–prey) and indirect interactions. Here, I present the results of an experiment designed to test the direct effects of red grouper on faunal communities associated with Florida Bay solution holes by excluding red grouper from solution holes for four weeks. Red grouper presence generally had positive effects on the abundance, richness, and diversity of faunal communities associated with engineered habitats. Few strong interactions were observed between red grouper and colonizing species, mainly juvenile coral reef fishes. These results suggest that by acting as both a predator and habitat engineer, red grouper shape unique communities, distinct from those of surrounding areas, and influence the composition of communities associated with manipulated habitats.

1996 ◽  
Vol 33 (2) ◽  
pp. 149-153 ◽  
Author(s):  
František Moravec ◽  
Edgar Mendoza-Franco ◽  
Joaquin Vargas-Vázquez

2021 ◽  
Author(s):  
Cher F Y Chow ◽  
Caitlin Bolton ◽  
Nader Boutros ◽  
Viviana Brambilla ◽  
Luisa Fontoura ◽  
...  

The process of coral recruitment is crucial to the healthy functioning of coral reef ecosystems, as well as recovery following disturbances. Fishes are key modulators of this process by feeding on algae and other benthic taxa that compete with corals for benthic space. However, foraging strategies within reef fish assemblages are highly diverse and the effect of foraging diversity on coral recruitment success remains poorly understood. Here, we test how the foraging traits of reef fishes affect coral settlement and juvenile success at Lizard Island, Great Barrier Reef. Using a multi-model inference approach incorporating six metrics of fish assemblage foraging diversity (foraging rates, trait richness, trait evenness, trait divergence, herbivore abundance, and benthic invertivore abundance), we found that herbivore abundance had positive effects on both coral settlement and recruitment success. However, foraging trait diversity had a negative effect on coral settlement but not on recruitment. Coral settlement was higher at sites with less trait diverse fish assemblages, specifically in trait divergence and richness. Moreover, these two trait diversity metrics were stronger predictors of coral settlement success compared to herbivore abundance. Our findings provide evidence that impacts mediated by fish foraging on coral juveniles can potentially be harmful during settlement, but the space-clearing effect overall remains advantageous. We show here that the variation of fish biodiversity across reefs can be a partial driver to spatially uneven patterns of coral recruitment and reef recovery.


2005 ◽  
Vol 71 (3) ◽  
pp. 267-277 ◽  
Author(s):  
Enrique Giménez-Hurtado ◽  
Raúl Coyula-Pérez-Puelles ◽  
Salvador E. Lluch-Cota ◽  
Abel A. González-Yañez ◽  
Víctor Moreno-García ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document