scholarly journals Alavi–Carlsen Calcification Score (ACCS): A Simple Measure of Global Cardiac Atherosclerosis Burden

Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1421
Author(s):  
Babak Saboury ◽  
Lars Edenbrandt ◽  
Reza Piri ◽  
Oke Gerke ◽  
Tom Werner ◽  
...  

Multislice cardiac CT characterizes late stage macrocalcification in epicardial arteries as opposed to PET/CT, which mirrors early phase arterial wall changes in epicardial and transmural coronary arteries. With regard to tracer, there has been a shift from using mainly 18F-fluorodeoxyglucose (FDG), indicating inflammation, to applying predominantly 18F-sodium fluoride (NaF) due to its high affinity for arterial wall microcalcification and more consistent association with cardiovascular risk factors. To make NaF-PET/CT an indispensable adjunct to clinical assessment of cardiac atherosclerosis, the Alavi–Carlsen Calcification Score (ACCS) has been proposed. It constitutes a global assessment of cardiac atherosclerosis burden in the individual patient, supported by an artificial intelligence (AI)-based approach for fast observer-independent segmentation. Common measures for characterizing epicardial coronary atherosclerosis by NaF-PET/CT as the maximum standardized uptake value (SUV) or target-to-background ratio are more versatile, error prone, and less reproducible than the ACCS, which equals the average cardiac SUV. The AI-based approach ensures a quick and easy delineation of the entire heart in 3D to obtain the ACCS expressing ongoing global cardiac atherosclerosis, even before it gives rise to CT-detectable coronary calcification. The quantification of global cardiac atherosclerotic burden by the ACCS is suited for management triage and monitoring of disease progression with and without intervention.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Amin Haghighat Jahromi ◽  
Donald A. Barkauskas ◽  
Matthew Zabel ◽  
Aaron M. Goodman ◽  
Garret Frampton ◽  
...  

Abstract Purpose Deriving links between imaging and genomic markers is an evolving field. 2-[18F]FDG PET/CT (18F-fluorodeoxyglucose positron emission tomography–computed tomography) is commonly used for cancer imaging, with maximum standardized uptake value (SUVmax) as the main quantitative parameter. Tumor mutational burden (TMB), the quantitative variable obtained using next-generation sequencing on a tissue biopsy sample, is a putative immunotherapy response predictor. We report the relationship between TMB and SUVmax, linking these two important parameters. Methods In this pilot study, we analyzed 1923 patients with diverse cancers and available TMB values. Overall, 273 patients met our eligibility criteria in that they had no systemic treatment prior to imaging/biopsy, and also had 2-[18F]FDG PET/CT within 6 months prior to the tissue biopsy, to ensure acceptable temporal correlation between imaging and genomic evaluation. Results We found a linear correlation between TMB and SUVmax (p < 0.001). In the multivariate analysis, only TMB independently correlated with SUVmax, whereas age, gender, and tumor organ did not. Conclusion Our observations link SUVmax in readily available, routinely used, and noninvasive 2-[18F]FDG PET/CT imaging to the TMB, which requires a tissue biopsy and time to process. Since higher TMB has been implicated as a prognostic biomarker for better outcomes after immunotherapy, further investigation will be needed to determine if SUVmax can stratify patient response to immunotherapy.


CNS Oncology ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. CNS46 ◽  
Author(s):  
Meetakshi Gupta ◽  
Tejpal Gupta ◽  
Nilendu Purandare ◽  
Venkatesh Rangarajan ◽  
Ameya Puranik ◽  
...  

Aim: To prospectively assess the clinical utility of pretreatment flouro-deoxy-glucose positron emission tomography/computed tomography (18F-FDG-PET/CT) in patients with primary central nervous system (CNS) lymphoma (PCNSL). Materials & methods: Patients with suspected/proven PCNSL underwent baseline whole-body 18F-FDG-PET/CT. Maximum standardized uptake value and tumor/normal tissue ratios were compared between CNS lymphoma and other histological diagnoses. Results: The mean maximum standardized uptake value (27.5 vs 18.2; p = 0.001) and mean tumor/normal tissue ratio (2.34 vs 1.53; p < 0.001) of CNS lymphoma was significantly higher than other histologic diagnoses. Five of 50 (10%) patients with biopsy-proven CNS lymphomas had pathologically increased FDG-uptake at extraneuraxial sites uncovering systemic lymphoma. Conclusion: Pretreatment whole-body 18F-FDG-PET/CT provides valuable complementary information in the diagnostic and staging evaluation of patients with PCNSL to guide therapeutic decision-making.


Sign in / Sign up

Export Citation Format

Share Document