scholarly journals Optimal Thermodynamic Processes For Gases

Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 448 ◽  
Author(s):  
Alexei Kushner ◽  
Valentin Lychagin ◽  
Mikhail Roop

In this paper, we consider an optimal control problem in the equilibrium thermodynamics of gases. The thermodynamic state of the gas is given by a Legendrian submanifold in a contact thermodynamic space. Using Pontryagin’s maximum principle, we find a thermodynamic process in this submanifold such that the gas maximizes the work functional. For ideal gases, this problem is shown to be integrable in Liouville’s sense and its solution is given by means of action-angle variables. For real gases considered to be a perturbation of ideal ones, the integrals are given asymptotically.


2019 ◽  
Vol 25 (1) ◽  
pp. 1 ◽  
Author(s):  
Carlos Campos ◽  
Cristiana J. Silva ◽  
Delfim F. M. Torres

We provide easy and readable GNU Octave/MATLAB code for the simulation of mathematical models described by ordinary differential equations and for the solution of optimal control problems through Pontryagin’s maximum principle. For that, we consider a normalized HIV/AIDS transmission dynamics model based on the one proposed in our recent contribution (Silva, C.J.; Torres, D.F.M. A SICA compartmental model in epidemiology with application to HIV/AIDS in Cape Verde. Ecol. Complex. 2017, 30, 70–75), given by a system of four ordinary differential equations. An HIV initial value problem is solved numerically using the ode45 GNU Octave function and three standard methods implemented by us in Octave/MATLAB: Euler method and second-order and fourth-order Runge–Kutta methods. Afterwards, a control function is introduced into the normalized HIV model and an optimal control problem is formulated, where the goal is to find the optimal HIV prevention strategy that maximizes the fraction of uninfected HIV individuals with the least HIV new infections and cost associated with the control measures. The optimal control problem is characterized analytically using the Pontryagin Maximum Principle, and the extremals are computed numerically by implementing a forward-backward fourth-order Runge–Kutta method. Complete algorithms, for both uncontrolled initial value and optimal control problems, developed under the free GNU Octave software and compatible with MATLAB are provided along the article.



2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Zhen Wu ◽  
Feng Zhang

We consider a stochastic recursive optimal control problem in which the control variable has two components: the regular control and the impulse control. The control variable does not enter the diffusion coefficient, and the domain of the regular controls is not necessarily convex. We establish necessary optimality conditions, of the Pontryagin maximum principle type, for this stochastic optimal control problem. Sufficient optimality conditions are also given. The optimal control is obtained for an example of linear quadratic optimization problem to illustrate the applications of the theoretical results.





Sign in / Sign up

Export Citation Format

Share Document