thermodynamic process
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 37)

H-INDEX

11
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Riccardo Rao ◽  
Stanislas Leibler

Any realistic evolutionary theory has to consider: (i) the dynamics of organisms that reproduce and possess heritable traits; (ii) the appearance of stochastic variations in these traits; and (iii) the selection of those organisms that better survive and reproduce. These elements shape the “evolutionary forces” that characterize the evolutionary dynamics. Here, we introduce a general model of reproduction–variation–selection dynamics. By treating these dynamics as a non-equilibrium thermodynamic process, we make precise the notion of the forces that characterize evolution. One of these forces, in particular, can be associated with the robustness of reproduction to variations. The emergence of this trait in our model—without any explicit selection for it—is an example of a general phenomenon, which can be called enaptation, distinct from the well-known and studied phenomena of adaptation and exaptation. Some of the detailed predictions of our model can be tested by quantitative laboratory experiments, similar to those performed in the past on evolving populations of proteins or viruses.


2021 ◽  
Vol 129 ◽  
pp. 112379
Author(s):  
Yuanyuan Qi ◽  
Can Wang ◽  
Rui Qian ◽  
Minnan Chen ◽  
Pingping Jiang ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3149
Author(s):  
Ansgar Weickgenannt ◽  
Ivan Kantor ◽  
François Maréchal ◽  
Jürg Schiffmann

This study investigates the technical and economic feasibility of replacing throttling valves with smale-scale, oil-free turbomachinery in industrial steam networks. This is done from the perspective of the turbomachine, which has to be integrated into a new or existing process. The considered machines have a power range of P=[0.5,…,250 kW] and have been designed using real industrial data from existing processes. Design guidelines are developed, which take into account the thermodynamic process as well as engineering aspects of such a turbomachine. The results suggest that steam conditioning prior to heat exchange could be completed by small expanders to produce mechanical work, reducing exergy destruction and improving site-wide energy efficiency compared to throttling valves. Cost estimates for such machines are presented, which serve as a basis for case-specific investment calculations. The resulting payback times of less than 18 months highlight the economic potential such solutions.


2021 ◽  
Author(s):  
Neharika Chamachi ◽  
Andreas Hartmann ◽  
Mai Quynh Ma ◽  
Georg Krainer ◽  
Michael Schlierf

AbstractPeriplasmic chaperones Skp and SurA are essential players in outer membrane protein (OMP) biogenesis. They prevent unfolded OMPs from misfolding during their passage through the periplasmic space and aid in the disassembly of OMP aggregates under cellular stress conditions. However, functionally important links between interaction mechanisms, structural dynamics, and energetics that underpin both Skp and SurA association with OMPs have remained largely unresolved. Here, using single-molecule fluorescence spectroscopy, we dissect the conformational dynamics and thermodynamics of Skp and SurA binding to unfolded OmpX, and explore their disaggregase activities. We show that both chaperones expand unfolded OmpX distinctly and induce microsecond chain reconfigurations in the client OMP structure. We further reveal that Skp and SurA bind their substrate in a fine-tuned thermodynamic process via enthalpy–entropy compensation. Finally, we observed synergistic activity of both chaperones in the disaggregation of oligomeric OmpX aggregates. Our findings provide an intimate view into the multi-faceted functionalities of Skp and SurA and the fine-tuned balance between conformational flexibility and underlying energetics in aiding chaperone action during OMP biogenesis.


2021 ◽  
Vol 252 ◽  
pp. 03055
Author(s):  
Wang Yarong ◽  
Wang Peirong

In the steam power plant, the working medium used for energy transformation is water vapor. The thermodynamic properties of water vapor are usually obtained by using water vapor tables and charts. Adiabatic process of water vapor is widespread in engineering applications. The adiabatic process is realized without heat addition or rejection and the entropy of the working medium during a reversible adiabatic process remains constant. During an adiabatic expansion process, superheated steam turns into saturated vapor , and further into wet vapor, the pressure and the temperature of the steam decreases. The entropy during a irreversible adiabatic process increases. In general, when analyzing the thermodynamic process of water vapor, we first determine the state parameters by using charts and tables, and then make relevant calculations according to the first law of thermodynamics.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rinaldo Grazioso ◽  
Sara García-Viñuales ◽  
Gianluca D’Abrosca ◽  
Ilaria Baglivo ◽  
Paolo Vincenzo Pedone ◽  
...  

AbstractDownhill folding has been defined as a unique thermodynamic process involving a conformations ensemble that progressively loses structure with the decrease of protein stability. Downhill folders are estimated to be rather rare in nature as they miss an energetically substantial folding barrier that can protect against aggregation and proteolysis. We have previously demonstrated that the prokaryotic zinc finger protein Ros87 shows a bipartite folding/unfolding process in which a metal binding intermediate converts to the native structure through a delicate barrier-less downhill transition. Significant variation in folding scenarios can be detected within protein families with high sequence identity and very similar folds and for the same sequence by varying conditions. For this reason, we here show, by means of DSC, CD and NMR, that also in different pH and ionic strength conditions Ros87 retains its partly downhill folding scenario demonstrating that, at least in metallo-proteins, the downhill mechanism can be found under a much wider range of conditions and coupled to other different transitions. We also show that mutations of Ros87 zinc coordination sphere produces a different folding scenario demonstrating that the organization of the metal ion core is determinant in the folding process of this family of proteins.


Sign in / Sign up

Export Citation Format

Share Document