scholarly journals A New Fractional Particle Swarm Optimization with Entropy Diversity Based Velocity for Reactive Power Planning

Entropy ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. 1112 ◽  
Author(s):  
Muhammad Waleed Khan ◽  
Yasir Muhammad ◽  
Muhammad Asif Zahoor Raja ◽  
Farman Ullah ◽  
Naveed Ishtiaq Chaudhary ◽  
...  

Optimal Reactive Power Dispatch (ORPD) is the vital concern of network operators in the planning and management of electrical systems to reduce the real and reactive losses of the transmission and distribution system in order to augment the overall efficiency of the electrical network. The principle objective of the ORPD problem is to explore the best setting of decision variables such as rating of the shunt capacitors, output voltage of the generators and tap setting of the transformers in order to diminish the line loss, and improve the voltage profile index (VPI) and operating cost minimization of standard electrical systems while keeping the variables within the allowable limits. This research study demonstrates a compelling transformative approach for resolving ORPD problems faced by the operators through exploiting the strength of the meta-heuristic optimization model based on a new fractional swarming strategy, namely fractional order (FO)–particle swarm optimization (PSO), with consideration of the entropy metric in the velocity update mechanism. To perceive ORPD for standard 30 and 57-bus networks, the complex nonlinear objective functions, including minimization of the system, VPI improvement and operating cost minimization, are constructed with emphasis on efficacy enhancement of the overall electrical system. Assessment of the results show that the proposed FO-PSO with entropy metric performs better than the other state of the art algorithms by means of improvement in VPI, operating cost and line loss minimization. The statistical outcomes in terms of quantile–quantile illustrations, probability plots, cumulative distribution function, box plots, histograms and minimum fitness evaluation in a set of autonomous trials validate the capability of the proposed optimization scheme and exhibit sufficiency and also vigor in resolving ORPD problems.

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Hamza Yapıcı ◽  
Nurettin Çetinkaya

The power loss in electrical power systems is an important issue. Many techniques are used to reduce active power losses in a power system where the controlling of reactive power is one of the methods for decreasing the losses in any power system. In this paper, an improved particle swarm optimization algorithm using eagle strategy (ESPSO) is proposed for solving reactive power optimization problem to minimize the power losses. All simulations and numerical analysis have been performed on IEEE 30-bus power system, IEEE 118-bus power system, and a real power distribution subsystem. Moreover, the proposed method is tested on some benchmark functions. Results obtained in this study are compared with commonly used algorithms: particle swarm optimization (PSO) algorithm, genetic algorithm (GA), artificial bee colony (ABC) algorithm, firefly algorithm (FA), differential evolution (DE), and hybrid genetic algorithm with particle swarm optimization (hGAPSO). Results obtained in all simulations and analysis show that the proposed method is superior and more effective compared to the other methods.


Sign in / Sign up

Export Citation Format

Share Document