scholarly journals Approximate Learning of High Dimensional Bayesian Network Structures via Pruning of Candidate Parent Sets

Entropy ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. 1142
Author(s):  
Zhigao Guo ◽  
Anthony C. Constantinou

Score-based algorithms that learn Bayesian Network (BN) structures provide solutions ranging from different levels of approximate learning to exact learning. Approximate solutions exist because exact learning is generally not applicable to networks of moderate or higher complexity. In general, approximate solutions tend to sacrifice accuracy for speed, where the aim is to minimise the loss in accuracy and maximise the gain in speed. While some approximate algorithms are optimised to handle thousands of variables, these algorithms may still be unable to learn such high dimensional structures. Some of the most efficient score-based algorithms cast the structure learning problem as a combinatorial optimisation of candidate parent sets. This paper explores a strategy towards pruning the size of candidate parent sets, and which could form part of existing score-based algorithms as an additional pruning phase aimed at high dimensionality problems. The results illustrate how different levels of pruning affect the learning speed relative to the loss in accuracy in terms of model fitting, and show that aggressive pruning may be required to produce approximate solutions for high complexity problems.

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 116661-116675 ◽  
Author(s):  
Yuguang Long ◽  
Limin Wang ◽  
Zhiyi Duan ◽  
Minghui Sun

2021 ◽  
Vol 15 (4) ◽  
pp. 1-46
Author(s):  
Kui Yu ◽  
Lin Liu ◽  
Jiuyong Li

In this article, we aim to develop a unified view of causal and non-causal feature selection methods. The unified view will fill in the gap in the research of the relation between the two types of methods. Based on the Bayesian network framework and information theory, we first show that causal and non-causal feature selection methods share the same objective. That is to find the Markov blanket of a class attribute, the theoretically optimal feature set for classification. We then examine the assumptions made by causal and non-causal feature selection methods when searching for the optimal feature set, and unify the assumptions by mapping them to the restrictions on the structure of the Bayesian network model of the studied problem. We further analyze in detail how the structural assumptions lead to the different levels of approximations employed by the methods in their search, which then result in the approximations in the feature sets found by the methods with respect to the optimal feature set. With the unified view, we can interpret the output of non-causal methods from a causal perspective and derive the error bounds of both types of methods. Finally, we present practical understanding of the relation between causal and non-causal methods using extensive experiments with synthetic data and various types of real-world data.


Sign in / Sign up

Export Citation Format

Share Document