optimal feature
Recently Published Documents


TOTAL DOCUMENTS

605
(FIVE YEARS 252)

H-INDEX

34
(FIVE YEARS 7)

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Deepti Sisodia ◽  
Dilip Singh Sisodia

PurposeThe problem of choosing the utmost useful features from hundreds of features from time-series user click data arises in online advertising toward fraudulent publisher's classification. Selecting feature subsets is a key issue in such classification tasks. Practically, the use of filter approaches is common; however, they neglect the correlations amid features. Conversely, wrapper approaches could not be applied due to their complexities. Moreover, in particular, existing feature selection methods could not handle such data, which is one of the major causes of instability of feature selection.Design/methodology/approachTo overcome such issues, a majority voting-based hybrid feature selection method, namely feature distillation and accumulated selection (FDAS), is proposed to investigate the optimal subset of relevant features for analyzing the publisher's fraudulent conduct. FDAS works in two phases: (1) feature distillation, where significant features from standard filter and wrapper feature selection methods are obtained using majority voting; (2) accumulated selection, where we enumerated an accumulated evaluation of relevant feature subset to search for an optimal feature subset using effective machine learning (ML) models.FindingsEmpirical results prove enhanced classification performance with proposed features in average precision, recall, f1-score and AUC in publisher identification and classification.Originality/valueThe FDAS is evaluated on FDMA2012 user-click data and nine other benchmark datasets to gauge its generalizing characteristics, first, considering original features, second, with relevant feature subsets selected by feature selection (FS) methods, third, with optimal feature subset obtained by the proposed approach. ANOVA significance test is conducted to demonstrate significant differences between independent features.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

Algorithmic – based search approach is ineffective at addressing the problem of multi-dimensional feature selection for document categorization. This study proposes the use of meta heuristic based search approach for optimal feature selection. Elephant optimization (EO) and Ant Colony optimization (ACO) algorithms coupled with Naïve Bayes (NB), Support Vector Machin (SVM), and J48 classifiers were used to highlight the optimization capability of meta-heuristic search for multi-dimensional feature selection problem in document categorization. In addition, the performance results for feature selection using the two meta-heuristic based approaches (EO and ACO) were compared with conventional Best First Search (BFS) and Greedy Stepwise (GS) algorithms on news document categorization. The comparative results showed that global optimal feature subsets were attained using adaptive parameters tuning in meta-heuristic based feature selection optimization scheme. In addition, the selected number of feature subsets were minimized dramatically for document classification.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

Feature selection is performed to eliminate irrelevant features to reduce computational overheads. Metaheuristic algorithms have become popular for the task of feature selection due to their effectiveness and flexibility. Hybridization of two or more such metaheuristics has become popular in solving optimization problems. In this paper, we propose a hybrid wrapper feature selection technique based on binary butterfly optimization algorithm (bBOA) and Simulated Annealing (SA). The SA is combined with the bBOA in a pipeline fashion such that the best solution obtained by the bBOA is passed on to the SA for further improvement. The SA solution improves the best solution obtained so far by searching in its neighborhood. Thus the SA tries to enhance the exploitation property of the bBOA. The proposed method is tested on twenty datasets from the UCI repository and the results are compared with five popular algorithms for feature selection. The results confirm the effectiveness of the hybrid approach in improving the classification accuracy and selecting the optimal feature subset.


2021 ◽  
Vol 38 (6) ◽  
pp. 1587-1598
Author(s):  
Sujith Ariyapadath

The main purpose of this research work is to apply machine learning and image processing techniques for plant classification efficiently. In the plant classification system, the conventional method is time-consuming and needs to apply expensive analytical instruments. The automated plant classification system helps to predict plant classes easily. The most challenging part of the automated plant classification research is to extract unique features of leaves. This paper proposes a plant classification model using an optimal feature set with combined features. The proposed model is used to extract features from leaf images and applied to image classification algorithms. After the evaluation process, it is found that GIST, Local Binary Pattern and Pyramid Histogram Oriented Gradient have better results than others in this particular application. Combined these three features extraction techniques and selected the optimal feature set through Neighbourhood Component Analysis. The optimal feature set helps classify plants with maximum accuracy in minimal time. Here performed an extensive experimental comparison of the proposed optimal feature set and other feature extraction methods using different classifiers and tested on different data sets (Swedish Leaves, Flavia, D-Leaf). The results confirm that this optimal feature set with NCA using ANN classifier leads to better classification achieved 98.99% accuracy in 353.39 seconds.


Author(s):  
Kishore Balasubramanian ◽  
Ananthamoorthy NP ◽  
Ramya K

Parkinson’s and Alzheimer’s Disease are believed to be most prevalent and common in older people. Several data-mining approaches are employed on the neuro-degenerative data in predicting the disease. A novel method has been built and developed to diagnose Alzheimer’s (AD) and Parkinson’s (PD) in early stages, which includes image acquisition, pre-processing, feature extraction and selection, followed by classification. The challenge lies in selecting the optimal feature subset for classification. In this work, the Sunflower Optimisation Algorithm (SFO) is employed to select the optimal feature set, which is then fed to the Kernel Extreme Learning Machine (KELM) for classification. The method is tested on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and local dataset for AD, the University of California, Irvine (UCI) machine learning repository and the Istanbul dataset for PD. Experimental outcomes have demonstrated a high accuracy level in both AD and PD diagnosis. For AD diagnosis, the highest classification rate is obtained for the AD versus NC classification using the ADNI dataset (99.32%) and local dataset (98.65%). For PD diagnosis, the highest accuracy of 99.52% and 99.45% is achieved on the UCI and Istanbul datasets, respectively. To show the robustness of the method, the method is compared with other similar methods of feature selection and classification with 10-fold cross-validation (CV) and with unseen data. The method proposed has an excellent prospect, bringing greater convenience to clinicians in making a better solid decision in clinical diagnosis of neuro-degenerative diseases.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8455
Author(s):  
Ankit Kumar Srivastava ◽  
Ajay Shekhar Pandey ◽  
Rajvikram Madurai Elavarasan ◽  
Umashankar Subramaniam ◽  
Saad Mekhilef ◽  
...  

The paper proposes a novel hybrid feature selection (FS) method for day-ahead electricity price forecasting. The work presents a novel hybrid FS algorithm for obtaining optimal feature set to gain optimal forecast accuracy. The performance of the proposed forecaster is compared with forecasters based on classification tree and regression tree. A hybrid FS method based on the elitist genetic algorithm (GA) and a tree-based method is applied for FS. Making use of selected features, aperformance test of the forecaster was carried out to establish the usefulness of the proposed approach. By way of analyzing and forecasts for day-ahead electricity prices in the Australian electricity markets, the proposed approach is evaluated and it has been established that, with the selected feature, the proposed forecaster consistently outperforms the forecaster with a larger feature set. The proposed method is simulated in MATLAB and WEKA software.


Sign in / Sign up

Export Citation Format

Share Document