scholarly journals Selection of Embedding Dimension and Delay Time in Phase Space Reconstruction via Symbolic Dynamics

Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 221
Author(s):  
Mariano Matilla-García ◽  
Isidro Morales ◽  
Jose Miguel Rodríguez ◽  
Manuel Ruiz Marín

The modeling and prediction of chaotic time series require proper reconstruction of the state space from the available data in order to successfully estimate invariant properties of the embedded attractor. Thus, one must choose appropriate time delay τ∗ and embedding dimension p for phase space reconstruction. The value of τ∗ can be estimated from the Mutual Information, but this method is rather cumbersome computationally. Additionally, some researchers have recommended that τ∗ should be chosen to be dependent on the embedding dimension p by means of an appropriate value for the time delay τw=(p−1)τ∗, which is the optimal time delay for independence of the time series. The C-C method, based on Correlation Integral, is a method simpler than Mutual Information and has been proposed to select optimally τw and τ∗. In this paper, we suggest a simple method for estimating τ∗ and τw based on symbolic analysis and symbolic entropy. As in the C-C method, τ∗ is estimated as the first local optimal time delay and τw as the time delay for independence of the time series. The method is applied to several chaotic time series that are the base of comparison for several techniques. The numerical simulations for these systems verify that the proposed symbolic-based method is useful for practitioners and, according to the studied models, has a better performance than the C-C method for the choice of the time delay and embedding dimension. In addition, the method is applied to EEG data in order to study and compare some dynamic characteristics of brain activity under epileptic episodes

Author(s):  
Shihui Lang ◽  
Zhu Hua ◽  
Guodong Sun ◽  
Yu Jiang ◽  
Chunling Wei

Abstract Several pairs of algorithms were used to determine the phase space reconstruction parameters to analyze the dynamic characteristics of chaotic time series. The reconstructed phase trajectories were compared with the original phase trajectories of the Lorenz attractor, Rössler attractor, and Chens attractor to obtain the optimum method for determining the phase space reconstruction parameters with high precision and efficiency. The research results show that the false nearest neighbor method and the complex auto-correlation method provided the best results. The saturated embedding dimension method based on the saturated correlation dimension method is proposed to calculate the time delay. Different time delays are obtained by changing the embedding dimension parameters of the complex auto-correlation method. The optimum time delay occurs at the point where the time delay is stable. The validity of the method is verified through combing the application of correlation dimension, showing that the proposed method is suitable for the effective determination of the phase space reconstruction parameters.


2011 ◽  
Vol 10 (6) ◽  
pp. 603-616 ◽  
Author(s):  
Shumin Hou ◽  
Ming Liang ◽  
Yourong Li

Noise reduction is a main step in fault diagnosis of the rotating machinery. However, it is not effective enough to purify the nonlinear fault features from the vibration shaft orbits using the traditional signal denoising techniques. This article improved the global projection denoising algorithm via calculating the optimal time delay τ and embedding dimension m, which can be regarded as an extension of the global phase space reconstruction. The de-noising effects of Lorenz signal and the experiment cases illustrated the optimal global projection method is very effective and reliable in reducing the noise and reconstructing the signals. Consequently, it is heavily recommended for use in fault diagnosis of large rotating machinery as well as in the other kinds of machinery.


10.29007/2fb8 ◽  
2018 ◽  
Author(s):  
Hongyan Li ◽  
Shanshan Bao ◽  
Yunqing Xuan

This study performed a rationality analysis of the delay time and embedding dimension value during phase space reconstruction in hydrological series and the effect on their chaotic characteristics. Using a monthly average runoff time series from the Ayanqian station (upstream) and the Jiangqiao station (midstream) in the Nen River Basin, we reached the following regularity conclusions. 1 Based on the flood season (4 months) in the Nen River Basin, we can deduce that the correlation sequence length for the runoff is 4~5 months, i.e., the delay time =3 or 4 is a reasonable choice. 2 Learn from the predictability experiment results for the monthly rainfall time series, we know that the calculation results of the G-P algorithm for the dimension of runoff series for the Nen River Basin are reasonable, i.e., the embedding dimension is no more than seven. 3 the most suitable parameters for the phase space reconstruction and its chaotic characteristic index in the Nen River Basin are as follows: delay time = 3~4, embedding dimension = 6~7, correlation dimension = 2.90~3.00, maximum Lyapunov index = 0.24~0.32, and the forecast time is 3~4 months.


1997 ◽  
Vol 07 (06) ◽  
pp. 1283-1294 ◽  
Author(s):  
D. Kugiumtzis

In the computation of the correlation dimension of chaotic time series corrupted with observational noise, the scaling region is often masked resulting in deteriorated estimates. Here a simple method is proposed to correct the corrupted correlation integral based on the statistical properties of the Euclidean norm used to compute the noisy point interdistances. When the noise level is known, the corrected slope from the noisy data is very close to the slope for the noise-free data. Thus if the scaling property of the noise-free attractor holds for distances around the noise amplitude then the correct dimension can be inferred. The problem of estimating the correct noise level is discussed and a simple approach is proposed. Simulations with synthetic noisy chaotic time series demonstrate the efficiency of the correction scheme. Furthermore, the correction scheme is used to enhance correlation dimension estimates for the Taylor–Couette chaotic data and for EEG data from epileptic seizures.


Sign in / Sign up

Export Citation Format

Share Document