scholarly journals The Violation of Bell-CHSH Inequalities Leads to Different Conclusions Depending on the Description Used

Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 872
Author(s):  
Aldo F. G. Solis-Labastida ◽  
Melina Gastelum ◽  
Jorge G. Hirsch

Since the experimental observation of the violation of the Bell-CHSH inequalities, much has been said about the non-local and contextual character of the underlying system. However, the hypothesis from which Bell’s inequalities are derived differ according to the probability space used to write them. The violation of Bell’s inequalities can, alternatively, be explained by assuming that the hidden variables do not exist at all, that they exist but their values cannot be simultaneously assigned, that the values can be assigned but joint probabilities cannot be properly defined, or that averages taken in different contexts cannot be combined. All of the above are valid options, selected by different communities to provide support to their particular research program.

2015 ◽  
Vol 8 (4) ◽  
pp. 722-742 ◽  
Author(s):  
TAPANI HYTTINEN ◽  
GIANLUCA PAOLINI ◽  
JOUKO VÄÄNÄNEN

AbstractA logical approach to Bell’s Inequalities of quantum mechanics has been introduced by Abramsky and Hardy (Abramsky & Hardy, 2012). We point out that the logical Bell’s Inequalities of Abramsky & Hardy (2012) are provable in the probability logic of Fagin, Halpern and Megiddo (Fagin et al., 1990). Since it is now considered empirically established that quantum mechanics violates Bell’s Inequalities, we introduce a modified probability logic, that we call quantum team logic, in which Bell’s Inequalities are not provable, and prove a Completeness theorem for this logic. For this end we generalise the team semantics of dependence logic (Väänänen, 2007) first to probabilistic team semantics, and then to what we call quantum team semantics.


2013 ◽  
Vol 28 (01) ◽  
pp. 1450004 ◽  
Author(s):  
ZHIGANG SONG ◽  
J.-Q. LIANG ◽  
L.-F. WEI

Analytic formulas of Bell correlations are derived in terms of quantum probability statistics under the assumption of measuring outcome-independence and the Bell's inequalities (BIs) are extended to general bipartite-entanglement macroscopic quantum-states (MQS) of arbitrary spins. For a spin-½ entangled state we find analytically that the violations of BIs really resulted from the quantum nonlocal correlations. However, the BIs are always satisfied for the spin-1 entangled MQS. More generally the quantum nonlocality does not lead to the violation for the integer spins since the nonlocal interference effects cancel each other by the quantum statistical-average. Such a cancellation no longer exists for the half-integer spins due to the nontrivial Berry phase, and thus the violation of BIs is understood remarkably as an effect of geometric phase. Specifically, our generic observation of the spin-parity effect can be experimentally tested with the entangled photon-pairs.


Sign in / Sign up

Export Citation Format

Share Document