scholarly journals Entropic Uncertainty for Two Coupled Dipole Spins Using Quantum Memory under the Dzyaloshinskii–Moriya Interaction

Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1595
Author(s):  
Ahmad N. Khedr ◽  
Abdel-Baset A. Mohamed ◽  
Abdel-Haleem Abdel-Aty ◽  
Mahmoud Tammam ◽  
Mahmoud Abdel-Aty ◽  
...  

In the thermodynamic equilibrium of dipolar-coupled spin systems under the influence of a Dzyaloshinskii–Moriya (D–M) interaction along the z-axis, the current study explores the quantum-memory-assisted entropic uncertainty relation (QMA-EUR), entropy mixedness and the concurrence two-spin entanglement. Quantum entanglement is reduced at increased temperature values, but inflation uncertainty and mixedness are enhanced. The considered quantum effects are stabilized to their stationary values at high temperatures. The two-spin entanglement is entirely repressed if the D–M interaction is disregarded, and the entropic uncertainty and entropy mixedness reach their maximum values for equal coupling rates. Rather than the concurrence, the entropy mixedness can be a proper indicator of the nature of the entropic uncertainty. The effect of model parameters (D–M coupling and dipole–dipole spin) on the quantum dynamic effects in thermal environment temperature is explored. The results reveal that the model parameters cause significant variations in the predicted QMA-EUR.

2017 ◽  
Vol 14 (12) ◽  
pp. 125208 ◽  
Author(s):  
Jiadong Shi ◽  
Zhiyong Ding ◽  
Tao Wu ◽  
Juan He ◽  
Lizhi Yu ◽  
...  

2021 ◽  
Vol 18 (8) ◽  
pp. 085204
Author(s):  
Saeed Haddadi ◽  
Mehrdad Ghominejad ◽  
Ahmad Akhound ◽  
Mohammad Reza Pourkarimi

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Wei-Min Lv ◽  
Chao Zhang ◽  
Xiao-Min Hu ◽  
Yun-Feng Huang ◽  
Huan Cao ◽  
...  

2019 ◽  
Vol 16 (9) ◽  
pp. 095202 ◽  
Author(s):  
Saeed Haddadi ◽  
Mohammad Reza Pourkarimi ◽  
Ahmad Akhound ◽  
Mehrdad Ghominejad

2019 ◽  
Vol 17 (01) ◽  
pp. 1950008 ◽  
Author(s):  
Mohammad Reza Pourkarimi

By assuming the effect of dissipative environment and the Hamiltonian XY-model and external magnetic field, the time evolution of the entropic uncertainty relation (EUR) in the presence of quantum-memory and the dynamics of quantum correlations (QC) are investigated. It is shown that EUR and QC may evolve in different ways during the time. However, they can behave similarly when the time tends to infinity. The effects of external magnetic field and anisotropic parameter are different on the dynamics of EUR and QC.


2019 ◽  
Vol 34 (17) ◽  
pp. 1950099
Author(s):  
Zhiming Huang ◽  
Xiaobin Wang ◽  
Yiyong Ye ◽  
Xiaokui Sheng ◽  
Zhenbang Rong ◽  
...  

In this work, we investigate the dynamics of quantum-memory-assisted entropic uncertainty relation for a two-level atom coupled with fluctuating electromagnetic field in the presence of a perfectly reflecting plane boundary. The solution of the master equation that governs the system evolution is derived. We find that entropic uncertainty and mixedness increase to a stable value with evolution time, but quantum correlation reduces to zero with evolution time. That is, the mixedness is positively associated with entropic uncertainty, however, increasing quantum correlation can cause the decrease of the uncertainty. The tightness of entropic uncertainty grows at first and then declines to zero with evolution time. In addition, entropic uncertainty fluctuates to relatively stable values with increasing the atom’s distance from the boundary, especially for short evolution time, which suggests a possible way of testing the vacuum fluctuating and boundary effect. Finally, we propose an effective method to control the uncertainty via quantum weak measurement reversal.


Sign in / Sign up

Export Citation Format

Share Document