scholarly journals Simple Equations Method and Non-Linear Differential Equations with Non-Polynomial Non-Linearity

Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1624
Author(s):  
Nikolay K. Vitanov ◽  
Zlatinka I. Dimitrova

We discuss the application of the Simple Equations Method (SEsM) for obtaining exact solutions of non-linear differential equations to several cases of equations containing non-polynomial non-linearity. The main idea of the study is to use an appropriate transformation at Step (1.) of SEsM. This transformation has to convert the non-polynomial non- linearity to polynomial non-linearity. Then, an appropriate solution is constructed. This solution is a composite function of solutions of more simple equations. The application of the solution reduces the differential equation to a system of non-linear algebraic equations. We list 10 possible appropriate transformations. Two examples for the application of the methodology are presented. In the first example, we obtain kink and anti- kink solutions of the solved equation. The second example illustrates another point of the study. The point is as follows. In some cases, the simple equations used in SEsM do not have solutions expressed by elementary functions or by the frequently used special functions. In such cases, we can use a special function, which is the solution of an appropriate ordinary differential equation, containing polynomial non-linearity. Specific cases of the use of this function are presented in the second example.

1987 ◽  
Vol 106 (3-4) ◽  
pp. 277-305 ◽  
Author(s):  
F. M. Arscott

SynopsisGiven an ordinary linear differential equation whose singularities are isolated, a solution is called multiplicative for a closed path C if, when continued analytically along C, it returns to its starting-point merely multiplied by a constant. This paper first classifies such paths into three types, then investigates combinations of two such paths, in which a number of qualitatively different situations can arise. A key result is also given relating to a three-path combination. There are applications to special functions and Floquet theory for periodic equations.


1955 ◽  
Vol 51 (4) ◽  
pp. 604-613
Author(s):  
Chike Obi

1·1. A general problem in the theory of non-linear differential equations of the second order is: Given a non-linear differential equation of the second order uniformly almost periodic (u.a.p.) in the independent variable and with certain disposable constants (parameters), to find: (i) the non-trivial relations between these parameters such that the given differential equation has a non-periodic u.a.p. solution; (ii) the number of periodic and non-periodic u.a.p. solutions which correspond to each such relation; and (iii) explicit analytical expressions for the u.a.p. solutions when they exist.


1965 ◽  
Vol 14 (4) ◽  
pp. 257-268 ◽  
Author(s):  
J. Burlak

In 1950, Wintner (11) showed that if the function f(x) is continuous on the half-line [0, ∞) and, in a certain sense, is “ small when x is large ” then the differential equationdoes not have L2 solutions, where the function y(x) satisfying (1) is called an L2 solution if


Author(s):  
Paul W. Spikes

SynopsisSufficient conditions are given to insure that all solutions of a perturbed non-linear second-order differential equation have certain integrability properties. In addition, some continuability and boundedness results are given for solutions of this equation.


Author(s):  
Guan Ke-ying ◽  
W. N. Everitt

SynopsisThere exists a relation (1.5) between any n + 2 distinct particular solutions of the differential equationIn this paper, we show that when and only when n = 0, 1 and 2, this relation can be represented by the following form:provided the form of this relation function Φn depends only on n and is independent of the coefficients of the equation. This result reveals interesting properties of these non-linear differential equations.


1931 ◽  
Vol 27 (4) ◽  
pp. 546-552 ◽  
Author(s):  
E. C. Bullard ◽  
P. B. Moon

A mechanical method of integrating a second-order differential equation, with any boundary conditions, is described and its applications are discussed.


Author(s):  
N. Parhi

AbstractIn this paper sufficient conditions have been obtained for non-oscillation of non-homogeneous canonical linear differential equations of third order. Some of these results have been extended to non-linear equations.


Sign in / Sign up

Export Citation Format

Share Document