scholarly journals Rate of Entropy Production in Stochastic Mechanical Systems

Entropy ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 19
Author(s):  
Gregory S. Chirikjian

Entropy production in stochastic mechanical systems is examined here with strict bounds on its rate. Stochastic mechanical systems include pure diffusions in Euclidean space or on Lie groups, as well as systems evolving on phase space for which the fluctuation-dissipation theorem applies, i.e., return-to-equilibrium processes. Two separate ways for ensembles of such mechanical systems forced by noise to reach equilibrium are examined here. First, a restorative potential and damping can be applied, leading to a classical return-to-equilibrium process wherein energy taken out by damping can balance the energy going in from the noise. Second, the process evolves on a compact configuration space (such as random walks on spheres, torsion angles in chain molecules, and rotational Brownian motion) lead to long-time solutions that are constant over the configuration space, regardless of whether or not damping and random forcing balance. This is a kind of potential-free equilibrium distribution resulting from topological constraints. Inertial and noninertial (kinematic) systems are considered. These systems can consist of unconstrained particles or more complex systems with constraints, such as rigid-bodies or linkages. These more complicated systems evolve on Lie groups and model phenomena such as rotational Brownian motion and nonholonomic robotic systems. In all cases, it is shown that the rate of entropy production is closely related to the appropriate concept of Fisher information matrix of the probability density defined by the Fokker–Planck equation. Classical results from information theory are then repurposed to provide computable bounds on the rate of entropy production in stochastic mechanical systems.

Author(s):  
Sauro Succi

Dense fluids and liquids molecules are in constant interaction; hence, they do not fit into the Boltzmann’s picture of a clearcut separation between free-streaming and collisional interactions. Since the interactions are soft and do not involve large scattering angles, an effective way of describing dense fluids is to formulate stochastic models of particle motion, as pioneered by Einstein’s theory of Brownian motion and later extended by Paul Langevin. Besides its practical value for the study of the kinetic theory of dense fluids, Brownian motion bears a central place in the historical development of kinetic theory. Among others, it provided conclusive evidence in favor of the atomistic theory of matter. This chapter introduces the basic notions of stochastic dynamics and its connection with other important kinetic equations, primarily the Fokker–Planck equation, which bear a complementary role to the Boltzmann equation in the kinetic theory of dense fluids.


1979 ◽  
Vol 19 (2) ◽  
pp. 907-919 ◽  
Author(s):  
G. W. Ford ◽  
J. T. Lewis ◽  
J. McConnell

2018 ◽  
Vol 33 (34) ◽  
pp. 1845019 ◽  
Author(s):  
Vitaly Vanchurin

Informational dependence between statistical or quantum subsystems can be described with Fisher information matrix or Fubini-Study metric obtained from variations/shifts of the sample/configuration space coordinates. Using these (noncovariant) objects as macroscopic constraints, we consider statistical ensembles over the space of classical probability distributions (i.e. in statistical space) or quantum wave functions (i.e. in Hilbert space). The ensembles are covariantized using dual field theories with either complex scalar field (identified with complex wave functions) or real scalar field (identified with square roots of probabilities). We construct space–time ensembles for which an approximate Schrodinger dynamics is satisfied by the dual field (which we call infoton due to its informational origin) and argue that a full space–time covariance on the field theory side is dual to local computations on the information theory side. We define a fully covariant information-computation tensor and show that it must satisfy certain conservation equations. Then we switch to a thermodynamic description of the quantum/statistical systems and argue that the (inverse of) space–time metric tensor is a conjugate thermodynamic variable to the ensemble-averaged information-computation tensor. In (local) equilibrium, the entropy production vanishes, and the metric is not dynamical, but away from the equilibrium the entropy production gives rise to an emergent dynamics of the metric. This dynamics can be described approximately by expanding the entropy production into products of generalized forces (derivatives of metric) and conjugate fluxes. Near equilibrium, these fluxes are given by an Onsager tensor contracted with generalized forces and on the grounds of time-reversal symmetry, the Onsager tensor is expected to be symmetric. We show that a particularly simple and highly symmetric form of the Onsager tensor gives rise to the Einstein–Hilbert term. This proves that general relativity is equivalent to a theory of nonequilibrium (thermo)dynamics of the metric, but the theory is expected to break down far away from equilibrium where the symmetries of the Onsager tensor are to be broken.


Sign in / Sign up

Export Citation Format

Share Document