On Mechanical Systems with a Lie Group as Configuration Space

Author(s):  
Charles-Michel Marle
2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Chao Liu ◽  
Shengjing Tang ◽  
Jie Guo

The intrinsic infinite horizon optimal control problem of mechanical systems on Lie group is investigated. The geometric optimal control problem is built on the intrinsic coordinate-free model, which is provided with Levi-Civita connection. In order to obtain an analytical solution of the optimal problem in the geometric viewpoint, a simplified nominal system on Lie group with an extra feedback loop is presented. With geodesic distance and Riemann metric on Lie group integrated into the cost function, a dynamic programming approach is employed and an analytical solution of the optimal problem on Lie group is obtained via the Hamilton-Jacobi-Bellman equation. For a special case on SO(3), the intrinsic optimal control method is used for a quadrotor rotation control problem and simulation results are provided to show the control performance.


2008 ◽  
Vol 75 (6) ◽  
Author(s):  
József Kövecses

In this paper, we generalize the idea of the free-body diagram for analytical mechanics for representations of mechanical systems in configuration space. The configuration space is characterized locally by an Euclidean tangent space. A key element in this work relies on the relaxation of constraint conditions. A new set of steps is proposed to treat constrained systems. According to this, the analysis should be broken down to two levels: (1) the specification of a transformation via the relaxation of the constraints; this defines a subspace, the space of constrained motion; and (2) specification of conditions on the motion in the space of constrained motion. The formulation and analysis associated with the first step can be seen as the generalization of the idea of the free-body diagram. This formulation is worked out in detail in this paper. The complement of the space of constrained motion is the space of admissible motion. The parametrization of this second subspace is generally the task of the analyst. If the two subspaces are orthogonal then useful decoupling can be achieved in the dynamics formulation. Conditions are developed for this orthogonality. Based on this, the dynamic equations are developed for constrained and admissible motions. These are the dynamic equilibrium equations associated with the generalized free-body diagram. They are valid for a broad range of constrained systems, which can include, for example, bilaterally constrained systems, redundantly constrained systems, unilaterally constrained systems, and nonideal constraint realization.


Author(s):  
Andreas Müller ◽  
Zdravko Terze

Recently various numerical integration schemes have been proposed for numerically simulating the dynamics of constrained multibody systems (MBS) operating. These integration schemes operate directly on the MBS configuration space considered as a Lie group. For discrete spatial mechanical systems there are two Lie group that can be used as configuration space: SE(3) and SO(3) × ℝ3. Since the performance of the numerical integration scheme clearly depends on the underlying configuration space it is important to analyze the effect of using either variant. For constrained MBS a crucial aspect is the constraint satisfaction. In this paper the constraint violation observed for the two variants are investigated. It is concluded that the SE(3) formulation outperforms the SO(3) × ℝ3 formulation if the absolute motions of the rigid bodies, as part of a constrained MBS, belong to a motion subgroup. In all other cases both formulations are equivalent. In the latter cases the SO(3) × ℝ3 formulation should be used since the SE(3) formulation is numerically more complex, however.


Entropy ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 19
Author(s):  
Gregory S. Chirikjian

Entropy production in stochastic mechanical systems is examined here with strict bounds on its rate. Stochastic mechanical systems include pure diffusions in Euclidean space or on Lie groups, as well as systems evolving on phase space for which the fluctuation-dissipation theorem applies, i.e., return-to-equilibrium processes. Two separate ways for ensembles of such mechanical systems forced by noise to reach equilibrium are examined here. First, a restorative potential and damping can be applied, leading to a classical return-to-equilibrium process wherein energy taken out by damping can balance the energy going in from the noise. Second, the process evolves on a compact configuration space (such as random walks on spheres, torsion angles in chain molecules, and rotational Brownian motion) lead to long-time solutions that are constant over the configuration space, regardless of whether or not damping and random forcing balance. This is a kind of potential-free equilibrium distribution resulting from topological constraints. Inertial and noninertial (kinematic) systems are considered. These systems can consist of unconstrained particles or more complex systems with constraints, such as rigid-bodies or linkages. These more complicated systems evolve on Lie groups and model phenomena such as rotational Brownian motion and nonholonomic robotic systems. In all cases, it is shown that the rate of entropy production is closely related to the appropriate concept of Fisher information matrix of the probability density defined by the Fokker–Planck equation. Classical results from information theory are then repurposed to provide computable bounds on the rate of entropy production in stochastic mechanical systems.


Author(s):  
Elena Celledoni ◽  
Ergys Çokaj ◽  
Andrea Leone ◽  
Davide Murari ◽  
Brynjulf Owren

2008 ◽  
Vol 75 (6) ◽  
Author(s):  
József Kövecses

In this part of the work we present some applications of the formulation developed in Part I (Kövecses, 2008, “Dynamics of Mechanical Systems and the Generalized Free-Body Diagram—Part I: General Formulation,” ASME J. Appl. Mech., 75(6), p. 061012) for the generalized free-body diagram in configuration space. This involves the specification and imposition of constraint conditions, which were identified as Step 2 of the analysis of a mechanical system in Part I. We will particularly consider bilaterally and unilaterally constrained systems, where constraints are realized via ideal or nonideal interfaces. We also look at the general case where the constraint configuration is possibly redundant. The results represent novel forms of dynamics models for mechanical systems, and can offer the possibility to gain more insight for simulation, design, and control.


2020 ◽  
Vol 57 ◽  
pp. 45-85
Author(s):  
Charles-Michel Marle ◽  

The French mathematician and physicist Jean-Marie Souriau studied Gibbs states for the Hamiltonian action of a Lie group on a symplectic manifold and considered their possible applications in Physics and Cosmology. These Gibbs states are presented here with detailed proofs of all the stated results. A companion paper to appear will present examples of Gibbs states on various symplectic manifolds on which a Lie group of symmetries acts by a Hamiltonian action, including the Poincar\'e disk and the Poincaré half-plane.


Sign in / Sign up

Export Citation Format

Share Document