scholarly journals Mean Hitting Time for Random Walks on a Class of Sparse Networks

Entropy ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 34
Author(s):  
Jing Su ◽  
Xiaomin Wang ◽  
Bing Yao

For random walks on a complex network, the configuration of a network that provides optimal or suboptimal navigation efficiency is meaningful research. It has been proven that a complete graph has the exact minimal mean hitting time, which grows linearly with the network order. In this paper, we present a class of sparse networks G(t) in view of a graphic operation, which have a similar dynamic process with the complete graph; however, their topological properties are different. We capture that G(t) has a remarkable scale-free nature that exists in most real networks and give the recursive relations of several related matrices for the studied network. According to the connections between random walks and electrical networks, three types of graph invariants are calculated, including regular Kirchhoff index, M-Kirchhoff index and A-Kirchhoff index. We derive the closed-form solutions for the mean hitting time of G(t), and our results show that the dominant scaling of which exhibits the same behavior as that of a complete graph. The result could be considered when designing networks with high navigation efficiency.

1978 ◽  
Vol 15 (02) ◽  
pp. 280-291 ◽  
Author(s):  
Peichuen Kao

Let {ξ k : k ≧ 1} be a sequence of independent, identically distributed random variables with E{ξ 1} = μ ≠ 0. Form the random walk {S n : n ≧ 0} by setting S 0, S n = ξ 1 + ξ 2 + ··· + ξ n , n ≧ 1. Define the random function Xn by setting where α is a norming constant. Let N denote the hitting time of the set (–∞, 0] by the random walk. The principal result in this paper is to show (under appropriate conditions on the distribution of ξ 1) that the finite-dimensional distributions of Xn , conditioned on n < N < ∞ converge to those of the Brownian excursion process.


2012 ◽  
Vol 85 (1) ◽  
Author(s):  
Zhongzhi Zhang ◽  
Yihang Yang ◽  
Yuan Lin

1999 ◽  
Vol 36 (2) ◽  
pp. 593-600
Author(s):  
Jean Bertoin

Consider an oscillating integer valued random walk up to the first hitting time of some fixed integer x > 0. Suppose there is a fee to be paid each time the random walk crosses the level x, and that the amount corresponds to the overshoot. We determine the distribution of the sum of these fees in terms of the renewal functions of the ascending and descending ladder heights. The proof is based on the observation that some path transformation of the random walk enables us to translate the problem in terms of the intersection of certain regenerative sets.


2008 ◽  
Vol 387 (12) ◽  
pp. 3033-3038 ◽  
Author(s):  
Sungmin Lee ◽  
Soon-Hyung Yook ◽  
Yup Kim

1998 ◽  
Vol 7 (4) ◽  
pp. 397-401 ◽  
Author(s):  
OLLE HÄGGSTRÖM

We consider continuous time random walks on a product graph G×H, where G is arbitrary and H consists of two vertices x and y linked by an edge. For any t>0 and any a, b∈V(G), we show that the random walk starting at (a, x) is more likely to have hit (b, x) than (b, y) by time t. This contrasts with the discrete time case and proves a conjecture of Bollobás and Brightwell. We also generalize the result to cases where H is either a complete graph on n vertices or a cycle on n vertices.


2015 ◽  
Vol 64 (2) ◽  
pp. 028901
Author(s):  
Hu Yao-Guang ◽  
Wang Sheng-Jun ◽  
Jin Tao ◽  
Qu Shi-Xian

Author(s):  
A. Kalikova

This paper describes an investigation of analytical formulas for parameters in random walks. Random walks are used to model situations in which an object moves in a sequence of steps in randomly chosen directions. Given a graph and a starting point, we select a neighbor of it at random, and move to this neighbor; then we select a neighbor of this point at random, and move to it etc. It is a fundamental dynamic process that arise in many models in mathematics, physics, informatics and can be used to model random processes inherent to many important applications. Different aspects of the theory of random walks on graphs are surveyed. In particular, estimates on the important parameters of hitting time, commute time, cover time are discussed in various works. In some papers, authors have derived an analytical expression for the distribution of the cover time for a random walk over an arbitrary graph that was tested for small values of n. However, this work will show the simplified analytical expressions for distribution of hitting time, commute time, cover time for bigger values of n. Moreover, this work will present the probability mass function and the cumulative distribution function for hitting time, commute time.


Sign in / Sign up

Export Citation Format

Share Document