scholarly journals Does Decoherence Select the Pointer Basis of a Quantum Meter?

Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 106
Author(s):  
Abraham G. Kofman ◽  
Gershon Kurizki

The consensus regarding quantum measurements rests on two statements: (i) von Neumann’s standard quantum measurement theory leaves undetermined the basis in which observables are measured, and (ii) the environmental decoherence of the measuring device (the “meter”) unambiguously determines the measuring (“pointer”) basis. The latter statement means that the environment monitors (measures) selected observables of the meter and (indirectly) of the system. Equivalently, a measured quantum state must end up in one of the “pointer states” that persist in the presence of the environment. We find that, unless we restrict ourselves to projective measurements, decoherence does not necessarily determine the pointer basis of the meter. Namely, generalized measurements commonly allow the observer to choose from a multitude of alternative pointer bases that provide the same information on the observables, regardless of decoherence. By contrast, the measured observable does not depend on the pointer basis, whether in the presence or in the absence of decoherence. These results grant further support to our notion of Quantum Lamarckism, whereby the observer’s choices play an indispensable role in quantum mechanics.

Author(s):  
David Wallace

Decoherence is widely felt to have something to do with the quantum measurement problem, but getting clear on just what is made difficult by the fact that the ‘measurement problem’, as traditionally presented in foundational and philosophical discussions, has become somewhat disconnected from the conceptual problems posed by real physics. This, in turn, is because quantum mechanics as discussed in textbooks and in foundational discussions has become somewhat removed from scientific practice, especially where the analysis of measurement is concerned. This paper has two goals: firstly (§§1–2), to present an account of how quantum measurements are actually dealt with in modern physics (hint: it does not involve a collapse of the wave function) and to state the measurement problem from the perspective of that account; and secondly (§§3–4), to clarify what role decoherence plays in modern measurement theory and what effect it has on the various strategies that have been proposed to solve the measurement problem.


2014 ◽  
Vol 12 (05) ◽  
pp. 1450032 ◽  
Author(s):  
Fedor Herbut

Measurement of a degenerate (or non-degenerate) discrete observable is investigated in the framework of quantum measurement theory short of collapse, i.e. premeasurement theory, based on a unitary evolution operator that includes the measurement interaction between object and measuring instrument. A pointer observable with eigen-projectors of, in general, many (or even infinitely) dimensional ranges is introduced as a new approach. It leads to redundant entanglement in the final state. As the first main result, the basic dynamical relation of the approach is derived. It is shown to be equivalent to the calibration condition, which is known to define general exact measurement. The latter is given a practical form. Complete measurement (premeasurement with objectification or collapse), which is in some sense implied by the premeasurement theory, performed on a subsystem of a bipartite object in a pure state is studied with particular attention to its effect on the opposite, interactionally unaffected subsystem. The change of state of the latter is derived for exact complete subsystem measurement, and it is shown that the change is the same as for the simplest, i.e. ideal measurement (this is the second main result). It is applied to the case of twin observables and thus distant measurement obtains a new, more satisfactory, foundation (the third main result). Distant measurement is a basic concept in the EPR phenomenon. The well-known importance of the latter implies importance of the former.


Sign in / Sign up

Export Citation Format

Share Document