scholarly journals DWT-LSTM-Based Fault Diagnosis of Rolling Bearings with Multi-Sensors

Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2076
Author(s):  
Kai Gu ◽  
Yu Zhang ◽  
Xiaobo Liu ◽  
Heng Li ◽  
Mifeng Ren

Bearings are widely used in many steam turbine generator sets and other large rotating equipment. With the rapid development of contemporary industry, there is a great number of rotating equipment in various large factories, such as nuclear power plants. As the core component of rotating machinery, the failure of rolling bearings may lead to serious accidents during the industrial production operation. In order to accurately diagnose the fault status of rolling bearings, a novel long short-term memory (LSTM) model with discrete wavelet transformation (DWT) for multi-sensor fault diagnosis is proposed in this paper. The main purpose of this paper is to use the DWT-LSTM model to diagnose the health of rolling bearings. Firstly, the DWT is used to obtain detailed fault information in both different frequency and time scales. Then, the LSTM network is employed to characterize the long-term dependencies hidden in the time series of the fault information. The proposed DWT-LSTM method makes full use of the advantages of feature extraction based on expert experience and deep network learning to discover complex patterns from a large amount of data. Finally, the feasibility and efficiency of the proposed method are illustrated by comparison with the existing methods.

2021 ◽  
Vol 9 ◽  
Author(s):  
Jingke She ◽  
Tianzi Shi ◽  
Shiyu Xue ◽  
Yan Zhu ◽  
Shaofei Lu ◽  
...  

A combination of Convolutional Neural Network (CNN), Long-Short Term Memory (LSTM), and Convolutional LSTM (ConvLSTM) is constructed in this work for the fault diagnosis and post-accident prediction for Loss of Coolant Accidents (LOCAs) in Nuclear Power Plants (NPPs). The advantages of ConvLSTM, such as effective feature determination and extraction, are applied to the classification of LOCA cases. The prediction accuracy is enhanced via the collaborative work of CNN and LSTM. Such a hybrid model is proved to be functional, accurate, and adaptive, offering quick accident judgment and a reliable decision basis for the emergency response purpose. It then allows NPPs to have an Artificial Intelligence (AI)-based solution for fault diagnosis and post-accident prediction.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Lu Yu ◽  
Jianling Qu ◽  
Feng Gao ◽  
Yanping Tian

Faced with severe operating conditions, rolling bearings tend to be one of the most vulnerable components in mechanical systems. Due to the requirements of economic efficiency and reliability, effective fault diagnosis methods for rolling bearings have long been a hot research topic of rotary machinery fields. However, traditional methods such as support vector machine (SVM) and backpropagation neural network (BP-NN) which are composed of shallow structures trap into a dilemma when further improving their accuracies. Aiming to overcome shortcomings of shallow structures, a novel hierarchical algorithm based on stacked LSTM (long short-term memory) is proposed in this text. Without any preprocessing operation or manual feature extraction, the proposed method constructs a framework of end-to-end fault diagnosis system for rolling bearings. Beneficial from the memorize-forget mechanism of LSTM, features inherent in raw temporal signals are extracted hierarchically and automatically by stacking LSTM. A series of experiments demonstrate that the proposed model can not only achieve up to 99% accuracy but also outperform some state-of-the-art intelligent fault diagnosis methods.


1994 ◽  
Vol 44 (3) ◽  
pp. 225-235 ◽  
Author(s):  
Qin Zhang ◽  
Xuegao An ◽  
Jin Gu ◽  
Binquan Zhao ◽  
Dazhi Xu ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Xinghui Zhang ◽  
Jianshe Kang ◽  
Lei Xiao ◽  
Jianmin Zhao

Gear and bearing play an important role as key components of rotating machinery power transmission systems in nuclear power plants. Their state conditions are very important for safety and normal operation of entire nuclear power plant. Vibration based condition monitoring is more complicated for the gear and bearing of planetary gearbox than those of fixed-axis gearbox. Many theoretical and engineering challenges in planetary gearbox fault diagnosis have not yet been resolved which are of great importance for nuclear power plants. A detailed vibration condition monitoring review of planetary gearbox used in nuclear power plants is conducted in this paper. A new fault diagnosis method of planetary gearbox gears is proposed. Bearing fault data, bearing simulation data, and gear fault data are used to test the new method. Signals preprocessed using dilation-erosion gradient filter and fast Fourier transform for fault information extraction. The length of structuring element (SE) of dilation-erosion gradient filter is optimized by alpha stable distribution. Method experimental verification confirmed that parameter alpha is superior compared to kurtosis since it can reflect the form of entire signal and it cannot be influenced by noise similar to impulse.


Sign in / Sign up

Export Citation Format

Share Document