scholarly journals A Novel Hierarchical Algorithm for Bearing Fault Diagnosis Based on Stacked LSTM

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Lu Yu ◽  
Jianling Qu ◽  
Feng Gao ◽  
Yanping Tian

Faced with severe operating conditions, rolling bearings tend to be one of the most vulnerable components in mechanical systems. Due to the requirements of economic efficiency and reliability, effective fault diagnosis methods for rolling bearings have long been a hot research topic of rotary machinery fields. However, traditional methods such as support vector machine (SVM) and backpropagation neural network (BP-NN) which are composed of shallow structures trap into a dilemma when further improving their accuracies. Aiming to overcome shortcomings of shallow structures, a novel hierarchical algorithm based on stacked LSTM (long short-term memory) is proposed in this text. Without any preprocessing operation or manual feature extraction, the proposed method constructs a framework of end-to-end fault diagnosis system for rolling bearings. Beneficial from the memorize-forget mechanism of LSTM, features inherent in raw temporal signals are extracted hierarchically and automatically by stacking LSTM. A series of experiments demonstrate that the proposed model can not only achieve up to 99% accuracy but also outperform some state-of-the-art intelligent fault diagnosis methods.

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Qiang-qiang Chen ◽  
Shao-wu Dai ◽  
Hong-de Dai

The vibration signals resulting from rolling bearings are nonlinear and nonstationary, and an approach for the fault diagnosis of rolling bearings using the quantile permutation entropy and EMD (empirical mode decomposition) is proposed. Firstly, the EMD is used to decompose the rolling bearings vibration signal, and several IMFs (intrinsic mode functions) spanning different scales are obtained. Secondly, aiming at the shortcomings of the permutation entropy algorithm, a new permutation entropy algorithm based on sample quantile is proposed, and the quantile permutation entropy of the first few IMFs, which contain the main fault information, is calculated. The quantile permutation entropies are accordingly seen as the characteristic vector and then input to the particle swarm optimization and support vector machine. Finally, the proposed method is applied to the experimental data. The analysis results show that the proposed approach can effectively achieve fault diagnosis of rolling bearings.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2034 ◽  
Author(s):  
Li ◽  
Huang ◽  
Ji

Rolling bearings are the core components of rotating machinery. Their health directly affects the performance, stability and life of rotating machinery. To prevent possible damage, it is necessary to detect the condition of rolling bearings for fault diagnosis. With the rapid development of intelligent fault diagnosis technology, various deep learning methods have been applied in fault diagnosis in recent years. Convolution neural networks (CNN) have shown high performance in feature extraction. However, the pooling operation of CNN can lead to the loss of much valuable information and the relationship between the whole and the part may be ignored. In this study, we proposed CNNEPDNN, a novel bearing fault diagnosis model based on ensemble deep neural network (DNN) and CNN. We firstly trained CNNEPDNN model. Each of its local networks was trained with different training datasets. The CNN used vibration sensor signals as the input, whereas the DNN used nine time-domain statistical features from bearing vibration sensor signals as the input. Each local network of CNNEPDNN extracted different features from its own trained dataset, thus we fused features with different discrimination for fault recognition. CNNEPDNN was tested under 10 fault conditions based on the bearing data from Bearing Data Center of Case Western Reserve University (CWRU). To evaluate the proposed model, four aspects were analyzed: convergence speed of training loss function, test accuracy, F-Score and the feature clustering result by t-distributed stochastic neighbor embedding (t-SNE) visualization. The training loss function of the proposed model converged more quickly than the local models under different loads. The test accuracy of the proposed model is better than that of CNN, DNN and BPNN. The F-Score value of the model is higher than that of CNN model, and the feature clustering effect of the proposed model was better than that of CNN.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5300 ◽  
Author(s):  
Yang Liu ◽  
Xunshi Yan ◽  
Chen-an Zhang ◽  
Wen Liu

Multi-sensor data fusion is a feasible technique to achieve accurate and robust results in fault diagnosis of rotating machinery under complex conditions. However, the problem of information losses is always ignored during the fusion process. To solve above problem, an ensemble convolutional neural network model is proposed for bearing fault diagnosis. The framework of the proposed model contains three convolutional neural network branches: one multi-channel fusion convolutional neural network branch and two 1-D convolutional neural network branches. The former branch extracts the coupling features based on multi-sensor data and the latter two branches extract the inherent features based on single-sensor data, which can collect comprehensive fault information and reduce information losses. Furthermore, the support vector machine ensemble strategy is employed to fuse the results of multiple branches, which can improve the generalization and robustness of the proposed model. The experiments show that the proposed can obtain more effective and robust results than other methods.


2020 ◽  
Vol 11 (1) ◽  
pp. 314
Author(s):  
Gustavo Henrique Bazan ◽  
Alessandro Goedtel ◽  
Marcelo Favoretto Castoldi ◽  
Wagner Fontes Godoy ◽  
Oscar Duque-Perez ◽  
...  

Three-phase induction motors are extensively used in industrial processes due to their robustness, adaptability to different operating conditions, and low operation and maintenance costs. Induction motor fault diagnosis has received special attention from industry since it can reduce process losses and ensure the reliable operation of industrial systems. Therefore, this paper presents a study on the use of meta-heuristic tools in the diagnosis of bearing failures in induction motors. The extraction of the fault characteristics is performed based on mutual information measurements between the stator current signals in the time domain. Then, the Artificial Bee Colony algorithm is used to select the relevant mutual information values and optimize the pattern classifier input data. To evaluate the classification accuracy under various levels of failure severity, the performance of two different pattern classifiers was compared: The C4.5 decision tree and the multi-layer artificial perceptron neural networks. The experimental results confirm the effectiveness of the proposed approach.


2018 ◽  
Vol 8 (9) ◽  
pp. 1621 ◽  
Author(s):  
Fan Jiang ◽  
Zhencai Zhu ◽  
Wei Li ◽  
Yong Ren ◽  
Gongbo Zhou ◽  
...  

Acceleration sensors are frequently applied to collect vibration signals for bearing fault diagnosis. To fully use these vibration signals of multi-sensors, this paper proposes a new approach to fuse multi-sensor information for bearing fault diagnosis by using ensemble empirical mode decomposition (EEMD), correlation coefficient analysis, and support vector machine (SVM). First, EEMD is applied to decompose the vibration signal into a set of intrinsic mode functions (IMFs), and a correlation coefficient ratio factor (CCRF) is defined to select sensitive IMFs to reconstruct new vibration signals for further feature fusion analysis. Second, an original feature space is constructed from the reconstructed signal. Afterwards, weights are assigned by correlation coefficients among the vibration signals of the considered multi-sensors, and the so-called fused features are extracted by the obtained weights and original feature space. Finally, a trained SVM is employed as the classifier for bearing fault diagnosis. The diagnosis results of the original vibration signals, the first IMF, the proposed reconstruction signal, and the proposed method are 73.33%, 74.17%, 95.83% and 100%, respectively. Therefore, the experiments show that the proposed method has the highest diagnostic accuracy, and it can be regarded as a new way to improve diagnosis results for bearings.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
HungLinh Ao ◽  
Junsheng Cheng ◽  
Kenli Li ◽  
Tung Khac Truong

This study investigates a novel method for roller bearing fault diagnosis based on local characteristic-scale decomposition (LCD) energy entropy, together with a support vector machine designed using an Artificial Chemical Reaction Optimisation Algorithm, referred to as an ACROA-SVM. First, the original acceleration vibration signals are decomposed into intrinsic scale components (ISCs). Second, the concept of LCD energy entropy is introduced. Third, the energy features extracted from a number of ISCs that contain the most dominant fault information serve as input vectors for the support vector machine classifier. Finally, the ACROA-SVM classifier is proposed to recognize the faulty roller bearing pattern. The analysis of roller bearing signals with inner-race and outer-race faults shows that the diagnostic approach based on the ACROA-SVM and using LCD to extract the energy levels of the various frequency bands as features can identify roller bearing fault patterns accurately and effectively. The proposed method is superior to approaches based on Empirical Mode Decomposition method and requires less time.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Fan Jiang ◽  
Zhencai Zhu ◽  
Wei Li ◽  
Bo Wu ◽  
Zhe Tong ◽  
...  

Feature extraction is one of the most difficult aspects of mechanical fault diagnosis, and it is directly related to the accuracy of bearing fault diagnosis. In this study, improved permutation entropy (IPE) is defined as the feature for bearing fault diagnosis. In this method, ensemble empirical mode decomposition (EEMD), a self-adaptive time-frequency analysis method, is used to process the vibration signals, and a set of intrinsic mode functions (IMFs) can thus be obtained. A feature extraction strategy based on statistical analysis is then presented for IPE, where the so-called optimal number of permutation entropy (PE) values used for an IPE is adaptively selected. The obtained IPE-based samples are then input to a support vector machine (SVM) model. Subsequently, a trained SVM can be constructed as the classifier for bearing fault diagnosis. Finally, experimental vibration signals are applied to validate the effectiveness of the proposed method, and the results show that the proposed method can effectively and accurately diagnose bearing faults, such as inner race faults, outer race faults, and ball faults.


Sign in / Sign up

Export Citation Format

Share Document