rotary machinery
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 31)

H-INDEX

11
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Alexis Courbet ◽  
Jesse P Hansen ◽  
Yang Hsia ◽  
Neville Bethel ◽  
Young-Jun Park ◽  
...  

Natural nanomachines like the F1/F0-ATPase contain protein components that undergo rotation relative to each other. Designing such mechanically constrained nanoscale protein architectures with internal degrees of freedom is an outstanding challenge for computational protein design. Here we explore the de novo construction of protein rotary machinery from designed axle and ring components. Using cryoelectron microscopy, we find that axle-ring systems assemble as designed and populate diverse rotational states depending on symmetry match or mismatch and the designed interface energy landscape. These mechanical systems with internal rotational degrees of freedom are a step towards the systematic design of genetically encodable nanomachines.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3536
Author(s):  
Jakub Górski ◽  
Adam Jabłoński ◽  
Mateusz Heesch ◽  
Michał Dziendzikowski ◽  
Ziemowit Dworakowski

Condition monitoring is an indispensable element related to the operation of rotating machinery. In this article, the monitoring system for the parallel gearbox was proposed. The novelty detection approach is used to develop the condition assessment support system, which requires data collection for a healthy structure. The measured signals were processed to extract quantitative indicators sensitive to the type of damage occurring in this type of structure. The indicator’s values were used for the development of four different novelty detection algorithms. Presented novelty detection models operate on three principles: feature space distance, probability distribution, and input reconstruction. One of the distance-based models is adaptive, adjusting to new data flowing in the form of a stream. The authors test the developed algorithms on experimental and simulation data with a similar distribution, using the training set consisting mainly of samples generated by the simulator. Presented in the article results demonstrate the effectiveness of the trained models on both data sets.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2411
Author(s):  
Davor Kolar ◽  
Dragutin Lisjak ◽  
Michał Pająk ◽  
Mihael Gudlin

Intelligent fault diagnosis can be related to applications of machine learning theories to machine fault diagnosis. Although there is a large number of successful examples, there is a gap in the optimization of the hyper-parameters of the machine learning model, which ultimately has a major impact on the performance of the model. Machine learning experts are required to configure a set of hyper-parameter values manually. This work presents a convolutional neural network based data-driven intelligent fault diagnosis technique for rotary machinery which uses model with optimized hyper-parameters and network structure. The proposed technique input raw three axes accelerometer signal as high definition 1-D data into deep learning layers with optimized hyper-parameters. Input is consisted of wide 12,800 × 1 × 3 vibration signal matrix. Model learning phase includes Bayesian optimization that optimizes hyper-parameters of the convolutional neural network. Finally, by using a Convolutional Neural Network (CNN) model with optimized hyper-parameters, classification in one of the 8 different machine states and 2 rotational speeds can be performed. This study accomplished the effective classification of different rotary machinery states in different rotational speeds using optimized convolutional artificial neural network for classification of raw three axis accelerometer signal input. Overall classification accuracy of 99.94% on evaluation set is obtained with the CNN model based on 19 layers. Additionally, more data are collected on the same machine with altered bearings to test the model for overfitting. Result of classification accuracy of 100% on second evaluation set has been achieved, proving the potential of using the proposed technique.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yong Chen ◽  
Mian Jiang ◽  
Kuanfang He

Methods based on vibration analysis are currently regarded as the most conclusive means for fault diagnosis and health prognostics in rotary machinery. However, changing working conditions mean that the vibration signals originating from rotary machinery exhibit different levels of complexity. This complexity leads to increased difficulty in constructing health indicators (HIs). In this paper, we propose a multiscale Tsallis permutation entropy (MTPE) to construct the HIs of rotary machinery under different working conditions. MTPE values are a function of an entropy index and scale, which have the universality for handling the complexity of a permutated time series. The health condition of the rotary machinery was effectively represented by the MTPEs in conditional monitoring; the initial point of the unhealthy stage was found using the 3 σ interval. This was set as the alarm threshold according to the varying HI trend. Once this was established, dividing the stages into two-stage health stages (HS) was straightforward. Using a rolling bearing, a run-to-failure experiment was conducted and results suggested that the proposed method effectively assessed the status of the rotary machinery. Taken together, this study provided a novel complexity measure based on a methodology for constructing the HIs of rotary machinery and enriches conditional monitoring theory.


2021 ◽  
Vol 70 ◽  
pp. 1-10 ◽  
Author(s):  
Anil Kumar ◽  
Govind Vashishtha ◽  
C. P. Gandhi ◽  
Yuqing Zhou ◽  
Adam Glowacz ◽  
...  

Author(s):  
Alexandre de Macêdo Wahrhaftig ◽  
Reyolando Brasil ◽  
Gabriela Silva Correia Cordeiro

Sign in / Sign up

Export Citation Format

Share Document