scholarly journals Strategies Comparison for Voltage Unbalance Mitigation in LV Distribution Networks Using EV Chargers

Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 289
Author(s):  
Jorge Nájera ◽  
Hugo Mendonça ◽  
Rosa de Castro ◽  
Jaime Arribas

The increasing penetration of Electric Vehicles (EVs) in LV distribution networks can potentially cause voltage quality issues such as voltage unbalance and under-voltage conditions. According to the EV charger characteristics, some strategies can be adopted to mitigate the aforementioned effects. Smart decentralized charging controls seem to be a more practical solution than centralized controls, since there is no need for communication because they rely only on local measurements. The four most relevant decentralized charging strategies, two for single-phase and two for three-phase EV chargers, have been implemented in a typical three-phase four-wire European LV distribution network. Simulations have been carried out for scenarios with single-phase EV chargers, three-phase EV chargers, and a combination of both. Single-phase controls are aimed at under-voltage regulation, while three-phase controls are focused on mitigating voltage unbalance. Results show that the implementation of a decentralized EV charging control is an adequate solution for Distribution System Operators (DSOs) since it improves the reliability and security of the network. Moreover, even though decentralized charging control does not use any communication, the combination of three-phase and single-phase controls is able to mitigate voltage unbalance while preventing the under-voltage condition.

2015 ◽  
Vol 135 (3) ◽  
pp. 168-180 ◽  
Author(s):  
Ryota Mizutani ◽  
Hirotaka Koizumi ◽  
Kentaro Hirose ◽  
Kazunari Ishibashi

2021 ◽  
Vol 6 (2) ◽  
pp. 090-103
Author(s):  
Ahmadreza Eslami

Voltage quality is a one of the major concerns in distribution systems. Distributed Generations (DGs) have the potential to improve voltage quality, if optimally planned and operated. Considering the problem of DG siting and sizing, this paper aims at integrating technical factors, particularly voltage quality, in planning of DGs. Hence, a methodology is proposed which optimizes voltage quality in the presence of DGs and can be used as one of the objectives in a multi-objective problem or as an intermediate stage in usual DG planning. Modified voltage quality indices are proposed which consider factors including voltage profile, voltage variation due to DG disconnection, voltage regulation and voltage unbalance. The indices are defined in such a manner suitable for three-phase unbalanced networks. The system voltage quality is assessed by a new comprehensive voltage quality index. By applying this index, the DGs locating and penetration problem is formulated to improve system voltage quality. The method is tested on IEEE 13-bus feeder which is an inherently unbalanced network.


2016 ◽  
Vol 195 (3) ◽  
pp. 11-25 ◽  
Author(s):  
RYOTA MIZUTANI ◽  
HIROTAKA KOIZUMI ◽  
KENTARO HIROSE ◽  
KAZUNARI ISHIBASHI

Author(s):  
Kartik Prasad Basu ◽  
Moley Kutty George

Most faults in medium voltage (MV) distribution lines are temporary line to ground (LG) faults. Three-phase auto reclosing (TPAR) is commonly used to remove this fault with temporary disconnection of all the phases. Multi-shot single-phase auto reclosing (SPAR) may also be used to remove the LG fault. But it produces highly unbalanced and low voltage across the load during the reclosure dead time. It is proposed to connect a zigzag winding grounding transformer at the load bus to maintain the 3-phase load voltage when one phase opens during the SPAR. With low value of grounding resistance the 3-phase voltage during the SPAR dead time becomes approximately balanced. Directional over current relays may be used for the protection. Analysis of a MV radial distribution system having a zigzag transformer connected to the remotest load bus is presented with the computation of voltages during the dead time of SPAR.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Cheng-Ting Hsu ◽  
Hung-Ming Huang ◽  
Tsun-Jen Cheng ◽  
Lian-Jou Tsai

This paper presents the three-phase voltage and unbalance analysis for the distribution system with the loading of a light rail transit (LRT) tram. To investigate the dynamic responses of the system voltage and current, this paper adopts the Alternative Transients Program (ATP) software to model and simulate a multigrounded four-wire distribution system with an LRT loading. Two different definitions about unbalance are used to evaluate the problem. In this paper, the traction supply substation (TSS) with a single-phase transformer configuration is designed first for providing the electric power to the trams of LRT. However, it may result in the significant neutral line current and unbalance phenomenon to deteriorate the power quality of the distribution system. A Le-Blanc connection transformer in the TSS is therefore proposed to solve the problems.


Sign in / Sign up

Export Citation Format

Share Document