scholarly journals Flow Control over the Blunt Trailing Edge of Wind Turbine Airfoils Using Circulation Control

Energies ◽  
2018 ◽  
Vol 11 (3) ◽  
pp. 619 ◽  
Author(s):  
He-Yong Xu ◽  
Qing-Li Dong ◽  
Chen-Liang Qiao ◽  
Zheng-Yin Ye
AIAA Journal ◽  
2018 ◽  
Vol 56 (2) ◽  
pp. 554-570 ◽  
Author(s):  
He-Yong Xu ◽  
Chen-Liang Qiao ◽  
Hui-Qiang Yang ◽  
Zheng-Yin Ye

Author(s):  
K. J. Standish ◽  
C. P. van Dam

The adoption of blunt trailing edge airfoils for the inner regions of large wind turbine blades has been proposed. Blunt trailing edge airfoils would not only provide increased structural volume, but have also been found to improve the lift characteristics of airfoils and therefore allow for section shapes with a greater maximum thickness. Limited experimental data makes it difficult for wind turbine designers to consider and conduct tradeoff studies using these section shapes. This lack of experimental data precipitated the present analysis of blunt trailing edge airfoils using computational fluid dynamics. Several computational techniques are applied including a viscous/inviscid interaction method and several Reynolds-averaged Navier-Stokes methods.


Energy ◽  
2019 ◽  
Vol 185 ◽  
pp. 90-101 ◽  
Author(s):  
Li Guoqiang ◽  
Zhang Weiguo ◽  
Jiang Yubiao ◽  
Yang Pengyu

Author(s):  
Jay P. Wilhelm ◽  
Chad C. Panther ◽  
Franz A. Pertl ◽  
James E. Smith

A possible method for modeling a Circulation Controlled - Vertical Axis Wind Turbine (CC-VAWT) is a vortex model, based upon the circulation of a turbine blade. A vortex model works by continuously calculating the circulation strength and location of both free and blade vortices which are shed during rotation. The vortices’ circulation strength and location can then be used to compute a velocity at any point in or around the area of the wind turbine. This model can incorporate blade wake interactions, unsteady flow conditions, and finite aspect ratios. Blade vortex interactions can also be studied by this model to assist designers in the avoidance of adverse turbulent operational regions. Conventional vertical axis wind turbine power production is rated to produce power in an operating wind speed envelope. These turbines, unless designed specifically for low speed operation require rotational start-up assistance. The VAWT blade can be augmented to include circulation control capabilities. Circulation control can prolong the trailing edge separation and can be implemented by using blowing slots located adjacent to a rounded trailing edge surface; the rounded surface of the enhanced blade replaces the sharp trailing edge of a conventional airfoil. Blowing slots of the CC-VAWT blade are located on the top and bottom trailing edges and are site-controlled in multiple sections along the span of the blade. Improvements in the amount of power developed at lower speeds and the elimination or reduction of start-up assistance could be possible with a CC-VAWT. In order to design for a wider speed operating range that takes advantage of circulation control, an analytical model of a CC-VAWT would be helpful. The primary function of the model is to calculate the aerodynamic forces experienced by the CC-VAWT blade during various modes of operation, ultimately leading to performance predictions based on power generation. The model will also serve as a flow visualization tool to gain a better understanding of the effects of circulation control on the development and interactions of vortices within the wake region of the CC-VAWT. This paper will describe the development of a vortex analytical model of a CC-VAWT.


Wind Energy ◽  
2014 ◽  
Vol 18 (5) ◽  
pp. 909-923 ◽  
Author(s):  
Alexander Wolf ◽  
Thorsten Lutz ◽  
Werner Würz ◽  
Ewald Krämer ◽  
Oksana Stalnov ◽  
...  

Author(s):  
Jay P. Wilhelm ◽  
Chad Panther ◽  
Franz A. Pertl ◽  
James E. Smith

A possible method for analytically modeling a CC-VAWT (Circulation Controlled Vertical Axis Wind Turbine) is the momentum model, based upon the conservation of momentum principal. This model can consist of a single or multiple stream tubes and/or upwind and downwind partitions. A large number of stream tubes and the addition of the partition can increase the accuracy of the model predictions. The CC-VAWT blade has blowing slots located on the top and bottom trailing edges and have the capability to be site controlled in multiple sections along the span of the blade. The turbine blade, augmented to include circulation control capabilities, replaces the sharp trailing edge of a standard airfoil with a rounded surface located adjacent to the blowing slots. Circulation control (CC), along with a rounded trailing edge, induces the Coanda effect, entraining the flow field near the blowing slots thus preventing or delaying separation. Ultimately, circulation control adds momentum due to the mass flow of air coming out of the blowing slots, but is negligible compared to the momentum of the free stream air passing through the area of the turbine. In order to design for a broader range of operating speeds that will take advantage of circulation control, an analytical model of a CC-VAWT is helpful. The analytical modeling of a CC-VAWT could provide insight into the range of operational speeds in which circulation control is beneficial. The ultimate goal is to increase the range of operating speeds where the turbine produces power. Improvements to low-speed power production and the elimination or reduction of startup assistance could be possible with these modifications. Vertical axis wind turbines are typically rated at a particular ratio of rotational to wind speed operating range. In reality, however, wind speeds are variant and stray from the operating range causing the power production of a wind turbine to suffer. These turbines, unless designed specifically for low speed operation, may require rotational startup assistance. The added lift due to circulation control at low wind speeds, under certain design conditions, will allow the CC-VAWT to produce more power than a conventional VAWT of the same size. Circulation control methods, such as using blowing slots on the trailing edge are modeled as they are applied to a VAWT blade. A preliminary CC-VAWT was modeled using a standard NACA 0018 airfoil, modified to include blowing slots and a rounded trailing edge. This paper describes an analytical momentum model that can be used to predict the preliminary performance of a CC-VAWT.


Sign in / Sign up

Export Citation Format

Share Document