Aeroacoustic simulations of a blunt trailing-edge wind turbine airfoil

2014 ◽  
Vol 28 (4) ◽  
pp. 1241-1249 ◽  
Author(s):  
Taehyung Kim ◽  
Soogab Lee
AIAA Journal ◽  
2018 ◽  
Vol 56 (2) ◽  
pp. 554-570 ◽  
Author(s):  
He-Yong Xu ◽  
Chen-Liang Qiao ◽  
Hui-Qiang Yang ◽  
Zheng-Yin Ye

Author(s):  
K. J. Standish ◽  
C. P. van Dam

The adoption of blunt trailing edge airfoils for the inner regions of large wind turbine blades has been proposed. Blunt trailing edge airfoils would not only provide increased structural volume, but have also been found to improve the lift characteristics of airfoils and therefore allow for section shapes with a greater maximum thickness. Limited experimental data makes it difficult for wind turbine designers to consider and conduct tradeoff studies using these section shapes. This lack of experimental data precipitated the present analysis of blunt trailing edge airfoils using computational fluid dynamics. Several computational techniques are applied including a viscous/inviscid interaction method and several Reynolds-averaged Navier-Stokes methods.


Energies ◽  
2018 ◽  
Vol 11 (3) ◽  
pp. 619 ◽  
Author(s):  
He-Yong Xu ◽  
Qing-Li Dong ◽  
Chen-Liang Qiao ◽  
Zheng-Yin Ye

2016 ◽  
Vol 753 ◽  
pp. 052001 ◽  
Author(s):  
S. Baleriola ◽  
A. Leroy ◽  
S. Loyer ◽  
P. Devinant ◽  
S. Aubrun

2020 ◽  
Vol 8 (3) ◽  
pp. 212 ◽  
Author(s):  
Irene Solís-Gallego ◽  
Katia María Argüelles Díaz ◽  
Jesús Manuel Fernández Oro ◽  
Sandra Velarde-Suárez

Noise has arisen as one of the main restrictions for the deployment of wind turbines in urban environments or in sensitive ecosystems like oceans for offshore and coastal applications. An LES model, adequately planned and resolved, is useful to describe the noise generation mechanisms in wind turbine airfoils. In this work, a wall-resolved LES model of the turbulent flow around a typical wind turbine airfoil is presented and described in detail. The numerical results obtained have been validated with hot wire measurements in a wind tunnel. The description of the boundary layer over the airfoil provides an insight into the main noise generation mechanism, which is known to be the scattering of the vortical disturbances in the boundary layer into acoustic waves at the airfoil trailing edge. In the present case, 2D wave instabilities are observed in both suction and pressure sides, but these perturbations are diffused into a turbulent boundary layer prior to the airfoil trailing edge, so tonal noise components are not expected in the far-field noise propagation. The results obtained can be used as input data for the prediction of noise propagation to the far-field using a hybrid aeroacoustic model.


2003 ◽  
Vol 125 (4) ◽  
pp. 479-487 ◽  
Author(s):  
K. J. Standish ◽  
C. P. van Dam

The adoption of blunt trailing edge airfoils for the inboard region of large wind turbine blades has been proposed. Blunt trailing edge airfoils would not only provide a number of structural benefits, such as increased structural volume and ease of fabrication and handling, but they have also been found to improve the lift characteristics of airfoils. Therefore, the incorporation of blunt trailing edge airfoils would allow blade designers to more freely address the structural demands without having to sacrifice aerodynamic performance. Limited experimental data make it difficult for wind turbine designers to consider and conduct tradeoff studies using these section shapes and has provided the impetus for the present analysis of blunt trailing edge airfoils using computational fluid dynamics. Several computational techniques are applied, including a viscous/inviscid interaction method and three Reynolds-averaged Navier-Stokes methods.


Sign in / Sign up

Export Citation Format

Share Document