scholarly journals Particle Swarm Optimization-Based Power and Temperature Control Scheme for Grid-Connected DFIG-Based Dish-Stirling Solar-Thermal System

Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1300 ◽  
Author(s):  
Yang Li ◽  
Binyu Xiong ◽  
Yixin Su ◽  
Jinrui Tang ◽  
Zhiwen Leng

Variable-speed operation of a dish-Stirling (DS) concentrated solar-thermal power generating system can achieve higher energy conversion efficiency compared to the conventional fixed-speed operation system. However, tuning of the controllers for the existing control schemes is cumbersome due to the presence of a large number of control parameters. This paper proposes a new control system design approach for the doubly-fed induction generator (DFIG)-based DS system to achieve maximum power point tracking and constant receiver temperature regulation. Based on a developed thermo-electro-pneumatic model, a coordinated torque and mean pressure control scheme is proposed. Through steady-state analysis, the optimal torque is calculated using the measured insolation and it serves as the tracking reference for direct torque control of the DFIG. To minimize the tracking error due to temperature variation and the compressor loss of the hydrogen supply system, four optimal control parameters are determined using particle swarm optimization (PSO). Model-order reduction and the process of the pre-examination of system stability are incorporated into the PSO algorithm, and it effectively reduces the search effort for the best solution to achieve maximum power point tracking and maintain the temperature around the set-point. The results from computational simulations are presented to show the efficacy of the proposed scheme in supplying the grid system with smoothened maximum power generation as the solar irradiance varies.

Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 623 ◽  
Author(s):  
Muhannad Alshareef ◽  
Zhengyu Lin ◽  
Mingyao Ma ◽  
Wenping Cao

This paper presents an accelerated particle swarm optimization (PSO)-based maximum power point tracking (MPPT) algorithm to track global maximum power point (MPP) of photovoltaic (PV) generation under partial shading conditions. Conventional PSO-based MPPT algorithms have common weaknesses of a long convergence time to reach the global MPP and oscillations during the searching. The proposed algorithm includes a standard PSO and a perturb-and-observe algorithm as the accelerator. It has been experimentally tested and compared with conventional MPPT algorithms. Experimental results show that the proposed MPPT method is effective in terms of high reliability, fast dynamic response, and high accuracy in tracking the global MPP.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Kuei-Hsiang Chao ◽  
Long-Yi Chang ◽  
Hsueh-Chien Liu

This study investigated the output characteristics of photovoltaic module arrays with partial module shading. Accordingly, we presented a maximum power point tracking (MPPT) method that can effectively track the global optimum of multipeak curves. This method was based on particle swarm optimization (PSO). The concept of linear decreases in weighting was added to improve the tracking performance of the maximum power point tracker. Simulation results were used to verify that this method could successfully track maximum power points in the output characteristic curves of photovoltaic modules with multipeak values. The results also established that the performance of the modified PSO-based MPPT method was superior to that of conventional PSO methods.


Author(s):  
Machmud Effendy ◽  
Khusnul Hidayat ◽  
Wahyu Dianto Pramana

Photovoltaic (PV) is a device which is capable to converts solar irradiance into Direct Current (DC) electricity energy. To increase the power result of PV, it needs a method to track the Maximum Power Point(MPP) which is usually called Maximum power Point Tracking(MPPT). So that, the power result increased with low cost. The purpose of this research is to conduct MPPT modeling by Particle Swarm Optimization (PSO). The proposed method is implemented in DC to DC converter. This research used SEPIC converter. The purpose of using SEPIC converter is in order the output of current and voltage have smallest ripple. The modelling system is conducted by using MATLAB 2016b software to find out performance of PSO and SEPIC converter. The evaluation of PSO and SEPIC converter performance has been done. The simulation result shows that the proposed system has been working very well. The PSO has good accurateness in tracking and capable to to track the power produced by PV with velocity around ±4,2 seconds when in conditions STC, ±9,2 seconds when in conditions partial shading, despite a fluctuating irradiance change. While in SEPIC converter is able to reach efficiency of ≥ 80%. 


Sign in / Sign up

Export Citation Format

Share Document