scholarly journals Heating Performance Enhancement of High Capacity PTC Heater with Modified Louver Fin for Electric Vehicles

Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2900 ◽  
Author(s):  
Myeong Hyeon Park ◽  
Sung Chul Kim

Electric vehicles use positive temperature coefficient (PTC) heaters and heat pumps to warm the vehicle cabin. High-capacity PTC heaters are needed because heat pump performance decreases sharply in the winter months due to low outdoor temperatures. The weight of PTC heaters is an important heater design factor for improving the single-charge travel distance of electric vehicles. A fin shape is necessary to improve the heater’s heat transfer performance in comparison to its weight. To develop a 6 kW class high-capacity PTC heater for electric vehicles, this study presents a numerical analysis of heat flow according to a modified louver fin’s geometric shape variables and evaluates heating performance. Based on the geometric shape of an initial plate-shaped fin prototype, a numerical analysis was performed on the width, position, height, and angle to develop a modified louver fin while considering heat transfer performance and ease of manufacturing. An improved prototype was built using the developed modified louver fin, and its heating performance under standard conditions was evaluated. The improved prototype had a heating performance of 6.05 kW, an efficiency of 98.0%, a pressure drop of 18.3 Pa, and a heating density of 3.81 kW/kg. Compared to the initial prototype, its heating performance and heating density were improved by approximately 15.7%.

1990 ◽  
Vol 112 (4) ◽  
pp. 287-292 ◽  
Author(s):  
P. F. Monaghan ◽  
D. P. Finn ◽  
P. H. Oosthuizen

This paper deals with measurement of heat transfer performance of wind convectors, an alternative air source evaporator system for heat pumps. An automatically controlled and monitored outdoor wind convector test facility that is capable of measuring heat transfer rates and overall heat-transfer coefficients to within ± 5 percent measurement uncertainty for up to three wind convectors has been designed, built, and tested. Data on air temperature and humidity, solar radiation, and wind speed and direction are simultaneously collected. The choice of measurement technique for each variable and an error analysis for each sensor is discussed. Typical graphical test results are presented.


Sign in / Sign up

Export Citation Format

Share Document