scholarly journals Fault Ride through Capability Analysis (FRT) in Wind Power Plants with Doubly Fed Induction Generators for Smart Grid Technologies

Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4260 ◽  
Author(s):  
Aphrodis Nduwamungu ◽  
Etienne Ntagwirumugara ◽  
Francis Mulolani ◽  
Waqar Bashir

Faults in electrical networks are among the key factors and sources of network disturbances. Control and automation strategies are among the key fault clearing techniques responsible for the safe operation of the system. Several researchers have revealed various constraints of control and automation strategies such as a slow dynamic response, the inability to switch the network on and off remotely, a high fault clearing time and loss minimization. For a system with wind energy technologies, if the power flow of a wind turbine is perturbed by a fault, the intermediate circuit voltage between the machine side converter and line side converter will rise to unacceptably high values due to the accumulation of energy in the DC link capacitor. To overcome the aforementioned issues, this paper used MATLAB simulations and experiments to analyze and validate the results. The results revealed that fault ride through capability with Supervisory Control and Data Acquisition (SCADA) viewer software, Active Servo software and wind sim packages are more adaptable to the variations of voltage sag, voltage swell and wind speed and avoid loss of synchronism and improve power quality. Furthermore, for protection purposes, a DC chopper and a crowbar should be incorporated into the management of excess energy during faults and a ferrite device included for the reduction of the electromagnetic field.

2020 ◽  
Vol 181 ◽  
pp. 03006
Author(s):  
Nduwamungu Aphrodis ◽  
Ntagwirumugara Etienne ◽  
Utetiwabo Wellars ◽  
Mulolani Francis

Faults in electrical power systems are among the key factors and sources to network disturbances, however control strategies are among key faults clearing techniques for the sake of safe operational mode of the system.Some researchers have shown various limitations of control strategies such as slow dynamic response,inability to switch Off and On network remotely and fault clearing time. For a system with wind energy technologies, if the power flow of a wind turbine is interrupted by a fault, the intermediate-circuit voltage between the machine-side converter and line-side converter will fall in unacceptably high values.To overcome the aforementioned issues, this paper used a Matlab simulations and experiments in order to analyze and validate the results.The results showed that fault ride through (FRT) with SCADA Viewer software are more adaptable to the variations of voltage and wind speed in order to avoid loss of synchronism. Therefore at the speed of 12.5m/s a wind produced a rated power of 750W and remained in synchronization before and after a fault created and cleared but worked as generator meanwhile at speed of 3.4m/s wind disconnected from grid and started working as a motor and consumed active power (P=-25watts) and voltage dip at 100% .For the protection purpose, the DC chopper and crowbar should be integrated towards management of excess energy during faults cases.


2019 ◽  
Vol 29 (03) ◽  
pp. 2050040
Author(s):  
Maheswari Muthusamy ◽  
A. K. Parvathy

This paper devises a design named brushless doubly fed induction generator (BDFIG) with a fault ride-through enhancement that employs upgraded field-oriented control (FOC) scheme. The DFIG is most suitable for wind energy conversion system (WECS) because it has an amicable establishment, economical operation and promising characteristics. A WECS based on two BDFIGs connected electrically in parallel and mechanically in series, excited by a three-phase inverter and controlled as variable speed, is described. For enhancing power quality and power flow capability, static compensator (STATCOM) has been incorporated in the proposed configuration. The comparative analysis on performance has been carried out with the existing proportional-integral (PI) controller and self-tuning fuzzy logic controller (STFLC) for the proposed configuration under varying wind speed. In this paper, the fuzzy controller is designed to adapt PI parameters Kp and Ki, in order to reduce at least some inherent characteristics (overshoot, response time, etc.) of the error between the reference and system response. The digital simulation results claim that the FLC-based controller can offer an attractive and feasible control for the proposed WECS integrating two BDFIGs.


Sign in / Sign up

Export Citation Format

Share Document