scholarly journals Design of an Optimized Thermal Management System for Li-Ion Batteries under Different Discharging Conditions

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5695 ◽  
Author(s):  
Ankur Bhattacharjee ◽  
Rakesh K. Mohanty ◽  
Aritra Ghosh

The design of an optimized thermal management system for Li-ion batteries has challenges because of their stringent operating temperature limit and thermal runaway, which may lead to an explosion. In this paper, an optimized cooling system is proposed for kW scale Li-ion battery stack. A comparative study of the existing cooling systems; air cooling and liquid cooling respectively, has been carried out on three cell stack 70Ah LiFePO4 battery at a high discharging rate of 2C. It has been found that the liquid cooling is more efficient than air cooling as the peak temperature of the battery stack gets reduced by 30.62% using air cooling whereas using the liquid cooling method it gets reduced by 38.40%. The performance of the liquid cooling system can further be improved if the contact area between the coolant and battery stack is increased. Therefore, in this work, an immersion-based liquid cooling system has been designed to ensure the maximum heat dissipation. The battery stack having a peak temperature of 49.76 °C at 2C discharging rate is reduced by 44.87% to 27.43 °C after using the immersion-based cooling technique. The proposed thermal management scheme is generalized and thus can be very useful for scalable Li-ion battery storage applications also.

Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6257
Author(s):  
Chunyu Zhao ◽  
Beile Zhang ◽  
Yuanming Zheng ◽  
Shunyuan Huang ◽  
Tongtong Yan ◽  
...  

The Li-ion battery is of paramount importance to electric vehicles (EVs). Propelled by the rapid growth of the EV industry, the performance of the battery is continuously improving. However, Li-ion batteries are susceptible to the working temperature and only obtain the optimal performance within an acceptable temperature range. Therefore, a battery thermal management system (BTMS) is required to ensure EVs’ safe operation. There are various basic methods for BTMS, including forced-air cooling, liquid cooling, phase change material (PCM), heat pipe (HP), thermoelectric cooling (TEC), etc. Every method has its unique application condition and characteristic. Furthermore, based on basic BTMS, more hybrid cooling methods adopting different basic methods are being designed to meet EVs’ requirements. In this work, the hybrid BTMS, as a more reliable and environmentally friendly method for the EVs, will be compared with basic BTMS to reveal its advantages and potential. By analyzing its cost, efficiency and other aspects, the evaluation criterion and design suggestions are put forward to guide the future development of BTMS.


2020 ◽  
Vol 174 ◽  
pp. 115280 ◽  
Author(s):  
Hamidreza Behi ◽  
Danial Karimi ◽  
Mohammadreza Behi ◽  
Morteza Ghanbarpour ◽  
Joris Jaguemont ◽  
...  

RSC Advances ◽  
2019 ◽  
Vol 9 (18) ◽  
pp. 9951-9961 ◽  
Author(s):  
Guoyun Fang ◽  
Yao Huang ◽  
Wei Yuan ◽  
Yang Yang ◽  
Yong Tang ◽  
...  

A novel battery thermal management system (BTMS) based on water evaporation (WE) and air-cooling (AC) for a tube–shell Li-ion battery (LIB) pack is designed.


Electrochem ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 135-148
Author(s):  
Mohammad Alipour ◽  
Aliakbar Hassanpouryouzband ◽  
Riza Kizilel

This paper proposes a novel He-based cooling system for the Li-ion batteries (LIBs) used in electric vehicles (EVs) and hybrid electric vehicles (HEVs). The proposed system offers a novel alternative battery thermal management system with promising properties in terms of safety, simplicity, and efficiency. A 3D multilayer coupled electrochemical-thermal model is used to simulate the thermal behavior of the 20 Ah LiFePO4 (LFP) cells. Based on the results, He gas, compared to air, effectively diminishes the maximum temperature rise and temperature gradient on the cell surface and offers a viable option for the thermal management of Li-ion batteries. For instance, in comparison with air, He gas offers 1.18 and 2.29 °C better cooling at flow rates of 2.5 and 7.5 L/min, respectively. The cooling design is optimized in terms of the battery’s temperature uniformity and the battery’s maximum temperature. In this regard, the effects of various parameters such as inlet diameter, flow direction, and inlet flow rate are investigated. The inlet flow rate has a more evident influence on the cooling efficiency than inlet/outlet diameter and flow direction. The possibility of using helium as a cooling fluid is shown to open new doors in the subject matter of an effective battery thermal management system.


Author(s):  
Zhoujian An ◽  
Krishna Shah ◽  
Yanbao Ma ◽  
Jia Li

Li-ion based energy storage devices have highly temperature dependent characteristics such as performance, life-cycle, efficiency and safety. Large temperature gradient within a cell results in thermal stresses and nonuniform current density leading to accelerated degradation. This adversely affects the life cycle of the cell due to capacity and power fade. There are similar issues due to large temperature variation within a battery pack. Operation of Li-ion cell outside the desirable temperature range also leads to lower efficiency, degradation and safety related issues. Different thermal management approaches have been proposed and demonstrated in past. The present work focuses specifically on minichannel based liquid cooling for conducting a parametric study. Minichannels have been found effective in various thermal management applications due to their simple construction and high convective heat transfer. In past, minichannels have been proposed and used in battery thermal management. However, designing of such systems has been somewhat arbitrary without considering various factors and trade-offs involved. There is a lack of rigorous studies for determining various parameters related to thermal management system that would result in adequate thermal management in a cost-effective manner. In the present work, a comprehensive parametric study has been carried out on the minichannel based liquid cooling for thermal management of Li-ion battery pack. A simplified computationally efficient numerical simulation-based approach has been used to conduct parametric study for optimizing the design and operating parameters of the thermal management system.


Author(s):  
Hussam Khasawneh ◽  
John Neal ◽  
Marcello Canova ◽  
Yann Guezennec ◽  
Ryan Wayne ◽  
...  

The analysis and optimization of thermal performance of Li-ion battery packs are topics of great interest today. Most Li-ion batteries for motive, vehicular, backup power and utility energy storage applications are fitted with a microprocessor-controlled thermal management system including an array of temperature and voltage sensors and an active cooling system. However, as the complexity of the thermal management system increases, so does its weight, volume and parasitic power consumption, all factors that adversely affect the vehicle’s performance. In this sense, an improved thermal management system based on including passive solutions such as phase change materials or heat spreading technologies could decrease the load on active components and ultimately the weight and costs of the system. This paper describes an experimental and simulation study aimed at evaluating the effectiveness of flexible graphite materials for heat spreaders in battery thermal management systems. A commercial Li-ion battery pack for power tools applications was adopted as a case study. The electro-thermal behavior of the battery pack was characterized through combined experimental investigation and 3D FEM modeling to determine the heat generation rate of the battery cells during utilization and to evaluate the thermal behavior of the battery pack. A thermal management solution based on flexible graphite heat spreading material was then designed and implemented. The paper presents a comparative study conducted in simulation to evaluate the improvements in the pack thermal behavior.


Sign in / Sign up

Export Citation Format

Share Document