battery thermal management
Recently Published Documents


TOTAL DOCUMENTS

435
(FIVE YEARS 306)

H-INDEX

40
(FIVE YEARS 18)

2022 ◽  
Vol 51 ◽  
pp. 101993
Author(s):  
Zengjia Guo ◽  
Qidong Xu ◽  
Siyuan Zhao ◽  
Shuo Zhai ◽  
Tianshou Zhao ◽  
...  

Author(s):  
Muhammad Muddasar

Electric Vehicles (EVs) are the need of the hour due to growing climate change problems linked with the transportation sector. Battery Thermal Management System (BTMS), which is accountable for certifying safety and performance of lithium-ion batteries (LiB), is the most vital part of an EV. LiB has auspicious gravimetric energy density but the heat generation due to chemical reactions inside a LiB during charging and discharging causes temperature rise which has a direct effect on LiB performance and safety. This study specifically focuses on aircooled BTMS, defines different types of air-cooled BTMS (active and Passive), discusses limitations associated with air-cooled BTMS, and investigates different optimization techniques and parameters to improve performance of air-cooled BTMS. Maintaining temperature within optimum range and uniform temperature distribution between cells of a battery pack are the major design parameters for improving the performance and efficiency of air-cooled BTMS. Various optimization techniques including cell arrangement with a battery pack, air-flow channel optimization, and air inlet/outlet position variations are discussed and each technique is thoroughly reviewed. Finally, it’s noted that passive air-cooled BTMS is not that effective for long-distance vehicles so most researchers shifted their focus toward active air-cooled BTMS. Active air-cooled BTMS requires a lot of power for effective performance. Lastly, the most recent field of air-cooled BTMS technology which is Air-Hybrid BTMS is discussed and declared a very promising solution for overcoming major limitations associated with air-cooled BTMS.


Sign in / Sign up

Export Citation Format

Share Document