scholarly journals Evaluation of Communication Infrastructures for Distributed Optimization of Virtual Power Plant Schedules

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1226
Author(s):  
Frauke Oest ◽  
Malin Radtke ◽  
Marita Blank-Babazadeh ◽  
Stefanie Holly ◽  
Sebastian Lehnhoff

With the transition towards renewable energy resources, the impact of small distributed generators (DGs) increases, leading to the need to actively stabilize distribution grids. DGs may be organized in virtual power plants (VPPs), where DGs’ schedules must be coordinated to enable the VPP to act as a single plant. One approach to solving this problem is using multi-agent systems (MAS) to offer autonomous, robust, and flexible control methods. The coordination of such systems requires communication between agents. The time required for this depends on communication characteristics, determined by the underlying communication infrastructure. In this paper, we investigate communication influences for the wireless technologies CDMA450 and LTE Advanced on the fully distributed optimization heuristic COHDA, which is used to perform optimized scheduling for a VPP. The use case under consideration is the adaptation of schedules to provide flexibility for regional congestion management for delivery on a regionalized ancillary service market (rAS). We investigate the scalability of the VPP and the effects of disturbances in the communication infrastructure. The results show that the optimization duration of COHDA can be influenced by the underlying communication infrastructure and that this optimization method is applicable to a limited extent for product delivery of rASs.

Author(s):  
D Pudjianto ◽  
C Ramsay ◽  
G Strbac

This article presents the concepts of the microgrid and the virtual power plant (VPP) as vehicles to facilitate cost-efficient integration of distributed energy resources (DERs) into the existing power system. These concepts were designed to enhance the system value and the controllability of DER and to provide frameworks for the development of interfaces among energy and ancillary service resources, system operators, and energy market participants. Through aggregation, DER access to energy markets is facilitated, and DER-based system support and ancillary services can be provided. By enabling this additional functionality, it is envisaged that system performance measured in the form of energy efficiency, power quality, security, and economic operation can be improved. In this paper, the technical and commercial functionality facilitated through the microgrid and VPP concepts is described. The paper concludes with case studies demonstrating the application of the concepts on a test system.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1410 ◽  
Author(s):  
Rakkyung Ko ◽  
Daeyoung Kang ◽  
Sung-Kwan Joo

As distributed energy resources (DERs) proliferate power systems, power grids face new challenges stemming from the variability and uncertainty of DERs. To address these problems, virtual power plants (VPPs) are established to aggregate DERs and manage them as single dispatchable and reliable resources. VPPs can participate in the day-ahead (DA) market and therefore require a bidding method that maximizes profits. It is also important to minimize the variability of VPP output during intra-day (ID) operations. This paper presents mixed integer quadratic programming-based scheduling methods for both DA market bidding and ID operation of VPPs, thus serving as a complete scheme for bidding-operation scheduling. Hourly bids are determined based on VPP revenue in the DA market bidding step, and the schedule of DERs is revised in the ID operation to minimize the impact of forecasting errors and maximize the incentives, thus reducing the variability and uncertainty of VPP output. The simulation results verify the effectiveness of the proposed methods through a comparison of daily revenue.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1182
Author(s):  
Weilin Zhong ◽  
Junru Chen ◽  
Muyang Liu ◽  
Mohammed Ahsan Adib Murad ◽  
Federico Milano

The paper proposes a coordinated frequency control strategy for Virtual Power Plant (VPPs), with the inclusion of Distributed Energy Resource (DERs), e.g., Solar Photo-Voltaic Generation (SPVG), Wind Generator (WG) as well as Energy Storage System (ESS). The objective is to improve the short-term dynamic response of the overall power system. The robustness of the proposed control is evaluated through a Monte Carlo analysis and a detailed modeling of stochastic disturbances of loads, wind speed, and solar irradiance. The impact of communication delays of a variety of realistic communication networks with different bandwidths is also discussed and evaluated. The case study is based on a modified version of the WSCC 9-bus test system with inclusion of a VPP. This is modeled as a distribution network with inclusion of a variety of DERs.


Proceedings ◽  
2020 ◽  
Vol 63 (1) ◽  
pp. 20
Author(s):  
Adrian Gligor ◽  
Piotr Cofta ◽  
Tomasz Marciniak ◽  
Cristian-Dragoș Dumitru

The proper power distribution systems operation is conditioned by its response to the consumers’ energy demand. This is achieved by using predictable power sources supplemented by ancillary services. With the penetration of different alternative power sources especially the renewable ones, the grid increasingly becomes an active distribution network. In this context, the stability provided by ancillary services becomes increasingly important. However, providers of ancillary services are interested to benefit from the shift towards renewable energy. This leads to a complex scenario regarding the management of such service providers, specifically virtual power plants. In this regard, the aim of the paper was to investigate the strategies for improving the performance of virtual power plants by increasing the number of distributed renewable energy resources.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2420 ◽  
Author(s):  
Haiteng Han ◽  
Hantao Cui ◽  
Shan Gao ◽  
Qingxin Shi ◽  
Anjie Fan ◽  
...  

More renewable energy resources have been connected to the grid with the promotion of global energy strategies, which presents new opportunities for the current electricity market. However, the growing integration of renewable energy also brings more challenges, such as power system reliability and the participants’ marketable behavior. Thus, how to coordinate integrated renewable resources in the electricity market environment has gained increasing interest. In this paper, a bilevel bidding model for load serving entities (LSEs) considering grid-level energy storage (ES) and virtual power plant (VPP) is established in the day-ahead (DA) market. Then, the model is extended by considering contingencies in the intraday (ID) market. Also, according to the extended bidding model, a remedial strategic rescheduling approach for LSE’s daily profit is proposed. It provides a quantitative assessment of LSE’s loss reduction based on contingency forecasting, which can be applied to the power system dispatch to help LSEs deal with coming contingencies. Simulation results verify the correctness and effectiveness of the proposed method.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 29490-29504
Author(s):  
Tudor Cioara ◽  
Marcel Antal ◽  
Vlad T. Mihailescu ◽  
Claudia D. Antal ◽  
Ionut M. Anghel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document