mixed integer quadratic programming
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 21)

H-INDEX

14
(FIVE YEARS 4)

2022 ◽  
Vol 14 (1) ◽  
pp. 529
Author(s):  
Brenda Valenzuela-Fonseca ◽  
Rodrigo Linfati ◽  
John Willmer Escobar

COVID-19 is generally transmitted from person to person through small droplets of saliva emitted when talking, sneezing, coughing, or breathing. For this reason, social distancing and ventilation have been widely emphasized to control the pandemic. The spread of the virus has brought with it many challenges in locating people under distance constraints. The effects of wakes between turbines have been studied extensively in the literature on wind energy, and there are well-established interference models. Does this apply to the propagation functions of the virus? In this work, a parallel relationship between the two problems is proposed. A mixed-integer linear programming (MIP) model and a mixed-integer quadratic programming model (MIQP) are formulated to locate people to avoid the spread of COVID-19. Both models were constructed according to the distance constraints proposed by the World Health Organization and the interference functions representing the effects of wake between turbines. Extensive computational tests show that people should not be less than two meters apart, in agreement with the adapted Wells–Riley model, which indicates that 1.6 to 3.0 m (5.2 to 9.8 ft) is the safe social distance when considering the aerosol transmission of large droplets exhaled when speaking, while the distance can be up to 8.2 m (26 ft) if all the droplets in a calm air environment are taken into account.


2021 ◽  
Vol 15 ◽  
pp. 110-115
Author(s):  
Yosra Hammi ◽  
Nadia Zanzouri ◽  
Mekki Ksouri

A hybrid passive control strategy is developed for a class of hybrid systems modeled by Mixed Logical Dynamical (MLD) approach. It allows to model different operating modes of the system and constraints. We proposed using the MPC for control system .The passive controller is used to take in account the actuator failure and the optimization problem is transformed into a mixed-integer quadratic programming problem (MIQP). The considering fault-tolerance capabilities are developed and discussed. The proposed method is illustrated by a motorboat system.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xianqiang Bao ◽  
Xinghua Xu ◽  
Yan Zhang ◽  
Yiyong Xiong ◽  
Chengya Shang

Due to the increasing concerns about the environmental and economic issues of traditional ships, all-electric ships with energy storage and renewable energy integration have become more and more appealing for the forthcoming future. In this paper, an optimal energy storage system (ESS) capacity determination method for a marine ferry ship is proposed; this ship has diesel generators and PV panels. ESSs sizing optimization and power system scheduling optimization are simultaneously conducted and it is converted to a mixed-integer quadratic programming (MIQP) model with special modeling techniques. The case study shows that the proposed method is flexible and effective, and the relationships between the ESSs size and the discharge rate, life cycle times, or initial investment cost are investigated.


2020 ◽  
Vol 10 (24) ◽  
pp. 8884
Author(s):  
Verner Püvi ◽  
Matti Lehtonen

Due to the increasing adoption of solar power generation, voltage unbalance estimation gets more attention in sparsely populated rural networks. This paper presents a Monte Carlo simulation augmented with convex mixed-integer quadratic programming to estimate voltage unbalance and maximum photovoltaic penetration. Additionally, voltage unbalance attenuation by proper phase allocation of photovoltaic plants is analysed. Single-phase plants are simulated in low-voltage distribution networks and voltage unbalance is evaluated as a contribution of measured background and photovoltaic-caused unbalance. Voltage unbalance is calculated in accordance with EN 50160 and takes into account 10-minute average values with 5% tolerance condition. Results of the optimization revealed substantial unbalance attenuation with optimal phase selection and increased potential of local generation hosting capacity in case of higher background unbalance.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jun Xiao ◽  
You Situ ◽  
Weideng Yuan ◽  
Xinyang Wang ◽  
Yi-Zhang Jiang

With the rapid development of power Internet of Things, its scale is becoming larger and larger. Many advanced applications depend on the accuracy of network model and state estimation, and the accuracy of network model and state estimation largely depends on network parameter error. Therefore, a parameter identification and estimation method based on mixed-integer quadratic programming (MIQP) and edge computing is proposed. Firstly, a “cloud-tube-edge-end” architecture of power Internet of Things is proposed, and the edge computing layer collects terminal data and conducts data analysis, which greatly reduces the computing pressure of cloud center. In this architecture, the local state estimation is used to limit the branch with error data in a specific range to prevent the measurement errors in other ranges from affecting the local estimation process. Then, the parameter identification model is transformed into MIQP model, and a penalty factor is introduced into the optimization model to identify the parameter error and measurement error in the process of minimizing the objective function. Finally, data encryption, identity authentication, and other methods are used in edge computing to achieve network security protection, so as to avoid network attacks and information leakage in the process of data transmission. The proposed method is tested and analyzed in IEEE 14-bus test system. The results show that the proposed method can accurately determine and identify the error data in a certain probability in the actual operation of the power grid, which is convenient for the controller to find out the wrong data in time and determine the source of the error data, so as to set a reasonable data value.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2840 ◽  
Author(s):  
Omid Sadeghian ◽  
Arash Moradzadeh ◽  
Behnam Mohammadi-Ivatloo ◽  
Mehdi Abapour ◽  
Fausto Pedro Garcia Marquez

Yearly generation maintenance scheduling (GMS) of generation units is important in each system such as combined heat and power (CHP)-based systems to decrease sudden failures and premature degradation of units. Imposing repair costs and reliability deterioration of system are the consequences of ignoring the GMS program. In this regard, this research accomplishes GMS inside CHP-based systems in order to determine the optimal intervals for predetermined maintenance required duration of CHPs and other units. In this paper, cost minimization is targeted, and violation of units’ technical constraints like feasible operation region of CHPs and power/heat demand balances are avoided by considering related constraints. Demand-response-based short-term generation scheduling is accomplished in this paper considering the maintenance intervals obtained in the long-term plan. Numerical simulation is performed and discussed in detail to evaluate the application of the suggested mixed-integer quadratic programming model that implemented in the General Algebraic Modeling System software package for optimization. Numerical simulation is performed to justify the model effectiveness. The results reveal that long-term maintenance scheduling considerably impacts short-term generation scheduling and total operation cost. Additionally, it is found that the demand response is effective from the cost perspective and changes the generation schedule.


Sign in / Sign up

Export Citation Format

Share Document