level energy
Recently Published Documents


TOTAL DOCUMENTS

614
(FIVE YEARS 217)

H-INDEX

37
(FIVE YEARS 9)

2022 ◽  
Vol 22 (1) ◽  
pp. 1-29
Author(s):  
Afiya Ayman ◽  
Amutheezan Sivagnanam ◽  
Michael Wilbur ◽  
Philip Pugliese ◽  
Abhishek Dubey ◽  
...  

Due to the high upfront cost of electric vehicles, many public transit agencies can afford only mixed fleets of internal combustion and electric vehicles. Optimizing the operation of such mixed fleets is challenging because it requires accurate trip-level predictions of electricity and fuel use as well as efficient algorithms for assigning vehicles to transit routes. We present a novel framework for the data-driven prediction of trip-level energy use for mixed-vehicle transit fleets and for the optimization of vehicle assignments, which we evaluate using data collected from the bus fleet of CARTA, the public transit agency of Chattanooga, TN. We first introduce a data collection, storage, and processing framework for system-level and high-frequency vehicle-level transit data, including domain-specific data cleansing methods. We train and evaluate machine learning models for energy prediction, demonstrating that deep neural networks attain the highest accuracy. Based on these predictions, we formulate the problem of minimizing energy use through assigning vehicles to fixed-route transit trips. We propose an optimal integer program as well as efficient heuristic and meta-heuristic algorithms, demonstrating the scalability and performance of these algorithms numerically using the transit network of CARTA.


Author(s):  
Kylie Hogan ◽  
Nicholas Genova ◽  
James R. Templeman ◽  
Adronie Verbrugghe ◽  
Anna K. Shoveller

Abstract OBJECTIVE To replicate a previously defined behavioral procedure to acclimate adult cats to temporary restriction in indirect calorimetry chambers and measure energy expenditure and respiratory quotient changes during acclimation. ANIMALS 8 healthy adult cats (4 spayed females, and 4 neutered males; mean ± SEM age, 2.5 ± 1.5 years; mean body weight, 4.8 ± 1.8 kg). PROCEDURES Cats underwent a 13-week incremental acclimation procedure whereby cats were acclimated to the chambers in their home environment (weeks 1 to 3), to the study room (weeks 4 to 6), and to increasing lengths of restriction within their home environment (weeks 7 to 8) and the chambers (weeks 9 to 13). Cat stress score, respiratory rate, fearfulness (assessed with a novel object test), energy expenditure, and respiratory quotient were measured. Data were analyzed by use of a repeated-measures mixed model. RESULTS Stress, based on cat stress scores, fearfulness, and respiration, peaked at weeks 4, 9, and 10 but returned to baseline levels by week 11. Energy expenditure and respiratory quotient peaked at weeks 10 and 11, respectively, but were reduced significantly by weeks 11 and 13, respectively. All cats returned to baseline by the end of the study and were deemed fully acclimated. CLINICAL RELEVANCE Changes in perceived stress level, energy expenditure, and respiratory quotient at various stages of the acclimation procedure suggest that stress should be considered a significant variable in energy balance measurements when indirect calorimetry is used in cats. An incremental acclimation procedure should therefore be used to prepare cats for the temporary space restriction necessary for indirect calorimetry studies.


Author(s):  
J. J. Fernández

AbstractWe use a two-level energy model to understand the conversion process that takes place in thermoradiative cells and to compare it with the conversion process that happens in photovoltaic cells. In this way, we show that in both kinds of converters the conversion process can be studied as the succession of a change in the populations of the levels that occur at constant chemical potential and a change in the value of the chemical potential of the two levels that happens while keeping their populations constant. As an application of the model, we will discuss why in thermoradiative cells the open-circuit voltage is negative while it is positive in photovoltaic cells. We also show that the expression for the open-circuit voltage is the same in both kinds of cells but that due to the values of the temperatures it is negative in thermoradiative cells and positive in photovoltaic ones.


2021 ◽  
Author(s):  
Mengran Li ◽  
Erdem Irtem ◽  
Hugo Pieter Iglesias van Montfort ◽  
Thomas Burdyny

Integrating carbon dioxide (CO2) electrolysis with CO2 capture provides new exciting opportunities for energy reductions by simultaneously removing the energy-demanding regeneration step in CO2 capture and avoiding critical issues faced by CO2 gas-fed electrolysers. However, understanding the potential energy advantages of an integrated capture and conversion process is not straightforward. There are only early-stage demonstrations of CO2 conversion from capture media very recently, and an evaluation of the broader process is paramount before claiming any energy gains from the integration. Here we identify the upper limits of the integrated capture and conversion from an energy perspective by comparing the working principles and performance of integrated and sequential CO2 conversion approaches. Our high-level energy analyses unveil that an integrated electrolysis unit must operate below 1000 kJ/molCO2 to ensure an energy benefit of up to 44% versus the existing state-of-the-art sequential route. However, such energy benefits diminish if future gas-fed electrolysers resolve the carbonation issue and if an integrated electrolyser has poor conversion efficiencies. We conclude with opportunities and limitations to develop industrially relevant integrated electrolysis, providing performance targets for novel integrated electrolysis processes.


2021 ◽  
pp. 1-7
Author(s):  
Lina Majeed Haider Al-Haideri ◽  
Necla Cakmak

Electronic and structural features of uranium-doped models of graphene (UG) were investigated in this work by employing the density functional theory (DFT) approach. Three sizes of models were investigated based on the numbers of surrounding layers around the central U-doped region including UG1, UG2, and UG3. In this regard, stabilized structures were obtained and their electronic molecular orbital features were evaluated, accordingly. The results indicated that the stabilized structures could be obtained, in which their electronic features are indeed size-dependent. The conductivity feature was expected at a higher level for the UG3 model whereas that of the UG1 model was at a lower level. Energy levels of the highest occupied and the lowest unoccupied molecular orbitals (HOMO and LUMO) were indeed the evidence of such achievement for electronic conductivity features. As a consequence, the model size of UG could determine its electronic feature providing it for specified applications.


Author(s):  
Kota Takisawa ◽  
Mutsumi Sugiyama

Abstract The crystallographic and electrical properties of tin monosulfide (SnS) epitaxial thin films grown by RF magnetron sputtering and sulfurization were investigated. The SnS(040)-oriented films were grown on an MgO(100) substrate. Two types of four-fold rotational symmetrical in-plane orientations, offset by 45° from each other, were observed using X-ray diffraction. The rotational symmetry was also observed using cross-sectional transmission electron microscopy. The electrical properties of the SnS films were controlled by varying the sulfurization temperature, and the carrier transport of all the SnS epitaxial films was mainly limited by grain boundary scattering. The activation energies of the carrier concentration before and after sulfurization of the films were estimated to be approximately 0.26 ± 0.02 eV and 0.20 ± 0.01 eV, respectively, based on temperature-dependent Hall measurements. These values mainly correspond to the acceptor level energy of Sn vacancy with a high/low potential barrier height around the grain boundary.


Author(s):  
Chao Wang ◽  
Weijie Zhang ◽  
Guosheng Wang ◽  
Yong Guo

High power density energy regeneration is one of the effective solutions to solve the contradiction between improving the damping performance and energy consumption of active suspension. The hydraulic commutator is used to realize hydraulic rectification and hydraulic variable speed/pump/motor with few teeth difference gear pairs is used to match the speed, combined with permanent magnet motor power generation and power supply to put forward kilowatt level high power density mechanical-electrical-hydraulic regenerative suspension system for high-speed tracked vehicles. The mathematical model and fluid-solid-thermo-magnetic multiphysics coupling model are built to analyze the damping performance and regenerative characteristics of the system under passive and semi-active working conditions. The simulation results show that the damping force of the system increases with the increase of the road excitation amplitude and the semi-active control can be realized by adjusting the duty cycle with the PWM control rectifier module. The high power density mechanical-electrical-hydraulic regenerative suspension system can realize kilowatt level energy regeneration, and the regenerative efficiency is more than 50% under low-frequency excitation. The temperature rise of the system is low during operation, which is helpful to improve the reliability and service life.


Sign in / Sign up

Export Citation Format

Share Document